MODEL QUESTION PAPER OF APGET SCHOLARSHIP 2024-25 (FOR CBSE/STATE SYLLABUS)

produced in series and parallel combinations would be -

(b) 200W

(b) 2:1

(a) 1:2

bulb?

(a) 110W

SUBJECT SCIENCE & MATHEMATICS

1.	The image formed by a concave mirror is observed to be virtual, erect and larger than the object.			
	Where should be the position of the object?			
	(a) Between the principal focus and the centre of curvature(b) At the centre of curvature			
	(c) Beyond the centre of curvature			
	(d) Between the pole of the mirror and its principal focus.			
2	Where an object should be placed in front of a convex lens to get a real image of the size of the			
2.	object?			
	(a) At the principal focus of the lens (b) At twice the focal length			
	(c) At infinity (d) Between the optical centre of the lens and its principal focus.			
3.	A spherical mirror and a thin spherical lens have each a focal length of -15 cm. The mirror and the			
	lens are likely to be			
	(a) both concave. (b) both convex.			
	(c) the mirror is concave and the lens is convex.			
	(d) the mirror is convex, but the lens is concave.			
4.	No matter how far you stand from a mirror, your image appears erect. The mirror is likely to be			
	(a) only plane. (b) Only concave.			
	(c) Only convex. (d) Either plane or convex.			
5.	Which of the following lenses would you prefer to use while reading small letters found in a			
	dictionary?			
	(a) A convex lens of focal length 50 cm. (b) A concave lens of focal length 50 cm.			
	(c) A convex lens of focal length 5 cm. (d) A concave lens of focal length 5 cm.			
6.	The human eye can focus on objects at different distances by adjusting the focal length of the eye			
	lens. This is due to			
	(a) presbyopia. (b) accommodation. (c) near-sightedness. (d) far-sightedness.			
7.	The change in focal length of an eye lens is caused by the action of the			
	(a) pupil. (b) retina. (c) ciliary muscles. (d) iris.			
8.	A piece of wire of resistance R is cut into five equal parts. These parts are then connected in parallel.			
	If the equivalent resistance of this combination is R' , then the ratio R/R' is -			
	(a) 1/25 (b) 1/5 (c) 5 (d) 25			
9.	An electric bulb is rated 220 V and 100 W. When it is operated on 110 V, the power consumed will			
	be			
	(a) 100 W (b) 75 W (c) 50 W (d) 25 W			
10.	Two conducting wires of the same material and of equal lengths and equal diameters are first			
	connected in series and then parallel in a circuit across the same potential difference. The ratio of heat			

(c) 1:4

(c) 40W

11. An electric bulb is connected to a 220 V generator. The current is 0.50 A. What is the power of the

(d) 4:1

(d)80W

12. An electric refrigerator rated 400 W opera	ites 8 hour/day. What is the c	ost of the energy to operate it
for 30 days at Rs 3.00 per kW h?		
(a) 150 (b)288	(c) 350	(d)100
13. Which of the following correctly describes	s the magnetic field near a lo	ng straight wire?
(a) The field consists of straight lines perp	endicular to the wire.	
(b) The field consists of straight lines para	llel to the wire.	
(c) The field consists of radial lines original	ating from the wire.	
(d) The field consists of concentric circles	centred on the wire.	
14. The phenomenon of electromagnetic induction	ction is	
(a) the process of charging a body.		
(b) the process of generating magnetic fiel	d due to a current passing the	rough a coil.
(c) producing induced current in a coil due		a magnet and the coil.
(d) the process of rotating a coil of an elec		
15. Most of the sources of energy we use repre	esent stored solar energy. Wh	nich of the following is not
ultimately derived from the Sun's energy?		
(a) geothermal energy	(b) wind energy	
(c) nuclear energy	(d) bio-mass.	
16. Baking powder contains sodium hydrogen		
` ' · · · · · · · · · · · · · · · · · ·	(c) Hydrochloric acid	(d) Acetic acid
17. The solution with the lowest concentration		(1) 11 60
(a) pH=7 (b) pH=8.6	(c) $pH=2.0$	(d) $pH=6.8$
18. Plaster of Paris is obtained	(b) Dry booting sylph	i.a. a.a.i.d.ka. a.alainnuu hundusuuida
(a) By heating expert to calcium sulphate		uric acid to calcium hydroxide
(c) By heating gypsum to a very high tem 19. When lead nitrate reacts with potassium ic		um to a 100°C
(a) PbI_2 is formed (b) KNO_3 is form	• • •	d (d) $PhIO_{-}$ is formed
20. In an endothermic reaction	ca (c) 1 b (103) 2 13 101111c	(a) 1 b103 is formed
(a) Heat is absorbed	(b) Heat is liberat	ed
(c) Heat is neither liberated nor absorbed	* *	
21. $AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s) + Racl(aq) + Racl(a$		<i>'</i>
(a) Precipitation reaction	(b) Double displa	
(c) Combination reaction	(d) both (a) and (l	
22. $X HNO_3 + Ca(OH)_2 \rightarrow Ca(NO_3)_2 + YH_2$	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	,
X and Y in the above equation respective	=	
(a) 2, 3 (b) 3, 2	(c) $2, 2$ (d)	1, 1
23. Complete the reaction $Zn + 2NaOH \rightarrow$		
$a) \overline{Zn}(OH)_2 + H_2$	(b) $Na_2ZnO_2 + 1$	H_2
$(c) Zn(OH)_2 + Na_2O$	(d) $Na_2ZnO_2 + N$	Ia_2O
24. Which of the following metal cannot be re	fined by electrolytic refining	?
(a) Cu (b) Ag	(c) Ni (d) Na
25. All the members of homologous series of		
(a) $C_n H_{2n}$ (b) $C_n H_{2n+2}$	(c) $C_n H_{2n-2}$ (d)	C_nH_{2n-4}
26. C_2H_4 reacts with hydrogen in presence of (a) CH_4 (b) C_2H_6		нсно
27. The IUPAC name of the compound CH_2 =	` '	
(a) 1, 1 dimethylprop-2-ene	(b) 2-methylprop-1-ene	
(c) 2-ethyl-3, 3-dimethylbutane	(d) 2, 3-dimethylhexane	
28. A redox reaction is the one in which	, , ,	
(a) Both the substances are reduced	(b) Both the substances a	re oxidised
(c) An acid is neutralised by the base		
(d) One substance is oxidised while the o	ther is reduced	

29. Which gas is evolved when acids	s react v	with metal car	bonates?				
(a) CO_2 (b) H_2		(c) NH_3		(d) O_2			
30. The metal that reacts with cold w	ater	_					
(a) Aluminium (b) zinc		(c) sodiı	ım	(d) iron			
31. Which of the following structure	is the s	ite for comple	ete digestion of	f carbohydrates, proteins and fats?			
_	Stoma	-	c) Small Intes	-			
32. Identify the incorrect statement fr	om the			()			
(a) CO_2 is less soluble than O_2 in		_					
(b) Haemoglobin is present in re-							
(c) In humans, O ₂ is carried by re							
(d) Rings of cartilage are present							
33. The main thinking part of the bra:							
	Hindb	rain (c) Midbrain	(d) All of these			
34. Match the column I with column							
Column I	II and C	Column II	ът арргориате				
1 Growth hormone	A	Ovary		_			
2 Adrenaline	В	Testes		_			
3 Estrogen	С	Adrenal					
4 Testosterone	D	Pituitary gla	und				
L				 -D, 4-A(d)1-A, 2-C, 3-D, 4-B			
		-C, 3-D, 4-A ((c) 1-D, 2-C, 3	-D, 4-A(u)1-A, 2-C, 3-D, 4-B			
35. The disease Kala-Azar is caused by Laishmania	•	h o (a) Euglana	(d) Paramasium			
	Amoe		c) Euglena	(d) Paramecium			
36. Identify the incorrect match from	the for	•	•	-			
(a) Amoeba- Binary fission				n- Regeneration			
(c) Hydra- Regeneration (d) Bacteria- Cell division							
-	37. Spore formation is a mode of reproduction in which of the following organism?						
(a) Bryophyllum (b) Rhizopus (c) Amoeba (d) Planaria							
38. The number of chromosomes pre-							
(a) 21 pairs (b) 22 pairs (c) 23 pairs (d) 24 pairs 39. In peas, a pure tall plant in homozygous condition is crossed with a pure dwarf plant in homozygous							
condition. The ratio of pure tall p	lants to	pure dwarf p	lants in the F2	generation			
is							
* *	1:2		(c) 1:3	(d)1:4			
40. Humans have two different sex cl	hromos	omes such as	X and Y. Whi	ch of the following statement			
about these two chromosomes is	correct	?					
(a) Offspring will inherit chromo	osomes	from only one	e parent				
(b)Male offspring will inherit bo	th X an	d Y chromoso	omes from fat	her only			
(c) Female offspring will inherit	both X	chromosome	s from mother	only			
(d)Male offspring will inherit X	chromo	some from m	other and Y c	hromosome from father			
41. According to Darwin, evolution to	akes pla	ace due to					
(a) Mutation (b)	Natura (al selection (c) Inheritance	(d) Variation			
42. According to Haldane the origin of	of life i	s from					
(a) Simple organic molecules		(b) Simple ino	rganic molecules			
(c) Pre-existing life			d) All of these	_			
43. Evolution of wild cabbage is term	ned as	`					
_		al selection (c) Mutation	(d) Genetic drift			
(a) Artificial selection (b) Natural selection (c) Mutation (d) Genetic drift 44. The modern day humans have their ancestors lived in							
(a) Australia (b) Asia (c) Africa (d) China							
45. Which of the following statement describes the function of decomposers?							
(a) Conversion of organic material into inorganic material							
(b) Conversion of inorganic material into organic material							

(c) Breakdown of inorganic	material very simple	e material	
(d) All of these			
46. What is the percentage of so	•• •		•
(a) 1%	(b) 2%	(c) 3%	(d)4%
47. The full form of UNEP is			
(a) United nations environm			s environment programme
(c) United nations ecosystem			s ecosystem programme
48. 'Kulhs' is the ancient water	-		
(a) Manipur	(b) Bihar		sh (d) Uttar Pradesh
49. Amrita Devi Bishnoi sacrific	-		
(a) Palm trees	· / •	(c) Sal trees	(d)Teakwood trees
50. The Tehri dam is constructe			
(a) Yamuna	(b) Bhagirathi		(d) Sutlej
51. 140 can be expressed as a pr			
a) $2^3 \times 5 \times 7$		$c)2^3 \times 3 \times 7$	$d)2^2 \times 3 \times 7$
52. If $(-1)^n + (-1)^{4n} = 0$, the	n n is		
a) Any positive integer	c) A	Any odd natural number	
b) Any negative integer	d) A	Any even natural numbe	r
53. The number $3^{13} - 3^{10}$ is div	visible by		
a) 2 and 3 only		c)2,3 and 10 only	d)2,3 and 13
54. The <i>H. C. F</i> of 280 and 674		•	
a) 2	b)4	c)14	d)28
55. If $H.C.F(a,b) = 12$ and a	$\times b = 1800$, then L.	C.M(a,b) =	,
a) 3600	b)900	c)150	d)90
56. Which of the following is no	<i>'</i>	,	
a) $\sqrt{3}x^2 - 2\sqrt{3}x + 3$		$c + \frac{1}{r}$	
,		λ	
b) $\frac{3}{2}x^3 - 5x^2 - \frac{1}{\sqrt{2}}x - 1$	d) 5	$5x^2-3x+\sqrt{2}$	
57. If $p(y) = 3y^4 - 5y^3 + y^2$	+ 8, then $p(-1)$ will	be	
a) 2	b)15	c)17	d)-17
58. Degree of polynomial y^3 –	$2y^2 - \sqrt{3}y + \frac{1}{2}$ is		
a) $\frac{1}{2}$	b) 2	c) 3	d) 4
2	,	,	,
59. The sum and product of the	zeroes or a quadratic	porynomiai are 2 and -1	3 respectively. The
quadratic polynomial is a) $x^2 - 2x + 15$	b)2 2 15	a) w ² + 2 w 1 T	d) w ² + 2w + 1F
,	,	,	/
60. If the sum of the zeroes of the	ie quadratic porynom	$\operatorname{ran} f(t) = \kappa t^{-} + 2t + 3$	sk is equal to their product,
then the value of k is	2	1	1
a) $-\frac{2}{3}$	b) $\frac{2}{3}$	c) $\frac{1}{3}$	d) $-\frac{1}{3}$
61. If the pair of linear equation			
of k is		•	
a) -2	b)3	c)2	d)4
62. The pair of linear equations	,	<i>'</i>	,
a) $k \neq -3$	b) $k \neq 6$		d) $k \neq -5$
63. The pair of linear equations			,
a) $k = 3$	b)k = 6		
64. The pair of linear equations	*	,	$a/\kappa = 10$
a) Unique solution		More than two solutions $\frac{12y - 10 \text{ has}}{10 \text{ has}}$	
b) No solution		Infinitely many solutions	
65. Which of the following is th		•	
a) $x = 2$, $v = 1$			
$\alpha_1 \lambda = L, v = 1$	UIA — T.V — T	$C/\lambda - O.\nu - I$	

66. Solutions of the quadratic equation $6x^2 + 7x - 10 = 0$ are					
a) $\frac{5}{6}$, -2	b) $\frac{6}{5}$, 2	c) $\frac{5}{6}$, 2	$d) - \frac{5}{6}, -2$		
67. If $x = k$ be a solution of the					
a) 268. The positive real root of the	b) -3 equation $64x^2 - 1 = 0$	c) 3	d) -2		
a) 8	b) $\frac{1}{16}$	c) $\frac{1}{2}$	$d)\frac{1}{4}$		
69. The discriminant of the quad	10	ď	4		
a) 40	b) 20	c) 24	d) 48		
70. If the equation $x^2 + 4x - k$			1) 1 > 4		
a) $k < -4$ 71. In an arithmetic progression	b) $k > -4$ if $a = 10$ and $d = 10$, th		d) $k \ge -4$ be:		
a) 10, 30, 50, 60	b) 10,20, 30, 40	c) 10, 15, 20, 25	d) 10, 18, 20, 30		
72. The first term and common of	lifference for the A.P. 3	3, 1, -1, -3 is			
a) 1 and 3	b) -1 and 3	c) 3 and -2	d) 2 and 3		
73. The missing terms in AP:	, 13,, 3 are:				
a) 11 and 9	b) 17 and 9	c) 18 and 8	d) 18 and 9		
74. The 21st term of AP whose f	irst two terms are -3 an	d 4 is:			
a) 17	b) 137	c) 143	d)-143		
75. The 10th term of the AP: 5, 8	8, 11, 14, is				
a) 32	b) 35	c) 38	d)185		
76. If perimeter of a triangle is 1 third side will be:	00 cm and the length of	f two sides are 30 cm a	and 40 cm, the length of		
a) 30 cm	b) 40 cm	c) 50 cm	d) 60 cm		
77. The height of an equilateral t	riangle of side 5 cm is:				
a) 4.33 cm	b) 3.9 cm	c) 5 cm	d) 4 cm		
78. Sides of two similar triangles	s are in the ratio 4: 9. A	reas of these triangles	are in the ratio		
a) 2:3	b) 4: 9	c) 81: 16	d) 16: 81		
79. If the distance between the p a) 2	oints $A(2, -2)$ and $B(-b) -2$	-1, <i>x</i>) is equal to 5, the	en the value of x is:		
80. The midpoint of a line segme	ent joining two points A	A(2,4) and $B(-2,-4)$	is		
a) (-2, 4)		c) (0, 0)	d) (-2, -4)		
81. The distance of point $A(2, 4)$) from the x-axis is				
a) 2 units	b) 4 units	c) -2 units	d) -4 units		
82. In \triangle ABC, right-angled at B,	AB = 24 cm, BC = 7 c	m. The value of tan C	is:		
a) 12/7	b) 24/7	c) 20/7	d) 7/24		
83. (Sin 30°+cos 60°)-(sin 60° +	cos 30°) is equal to:	,	,		
a) 0	b) $1+2\sqrt{3}$	c) 1-√3	d)1+ $\sqrt{3}$		
84. If $\cos x = \frac{2}{3}$ then $\tan x$ is eq		,	,		
3		1512	1) 2/4/5		
a) 5/2	b) $\sqrt{(5/2)}$	c) $\sqrt{5/2}$	d) $2/\sqrt{5}$		

DETAILED SOLUTIONS

Q.NO.	OPTION	DESCRIPTION
1.	4	Between the pole of the mirror and its principal focus.
		A concave mirror forms a virtual and erect image only when the object is placed
		between the poles of the mirror and it's principal focus.
		This image is larger than the size of object, ie, it is magnified.
2.	2	At twice the focal length The object should be placed at twice the focal length in front of a convex lens to get a real image of the size of the object.
3.	1	Since focal length is negative both lens and mirror is concave
4.	4	The correct option is (a) and (c) above. In a plane mirror, the image formed is always erect. In a convex, the image formed is always virtual and erect, irrespective of where the object is placed. Thus, the mirror in this case, is likely to be either plane or convex in nature.
5.	4	A convex lens gives a magnified image of an object when it is placed between the radius of curvature and focal length. Also, magnification is more for convex lenses having shorter focal length. Therefore, for reading small letters found in a dictionary, a convex lens of focal length 5 cm should be used.
6.	2	The process of adjusting the focal length of a lens to keep an object in focus on the retina as its distance from the eye varies is called the accommodation of the eye.
7.	3	The focal length of the eye lens changes due to the action of ciliary muscles. The focal length of the lens is changed when the ciliary muscle forces the lens to change shape. This enables us to see the image of objects at different distances.
8.	4	Resistance of this wire, $R = \rho \frac{l}{A}$ Resistance of a piece of length $\frac{l}{5} = \rho \frac{l}{5A} = \frac{R}{5}$ The equivalent resistance of the 5 wires in parallel is R' . Then $\frac{1}{R'} = \frac{1}{R/5} + \frac{1}{R/5} + \frac{1}{R/5} + \frac{1}{R/5} + \frac{1}{R/5}$ $\frac{1}{R'} = \frac{5}{R} + \frac{5}{R} + \frac{5}{R} + \frac{5}{R} + \frac{5}{R}$ $\frac{1}{R'} = \frac{25}{R}$ $\frac{R}{R'} = 25$
9.	4	Resistance of the bulb is given by, $R = \frac{V^2}{P} = \frac{220^2}{100}$ $= 484\Omega$ Power consumed by the bulb when operated on 110 V, $P = \frac{V^2}{R} = \frac{110^2}{484}$ $= 25 \text{ W}$
10.	3	For series combination
	1	

		Total maistance D = D + D +
		Total resistance $R = R_1 + R_2 + \cdots \dots$
		So calculating the series resistance in the given combination we get $\Rightarrow R_p = R +$
		R = 2R - (i)
		For parallel combination
		Total resistance $1/R = 1/R_1 + 1/R_2 + \cdots \dots$
		So calculating the parallel resistance in the given combination we get
		$\Rightarrow 1/R_p = 1/R + 1/R$
		$\Rightarrow 1/R_p = 2/R$
		$\Rightarrow R_p = R/2 - (ii)$
		To find the ratio we will combine equations (i) and (ii) we get
		$\Rightarrow R_p/R_s = (R/2)/2R = 1/4$
		The ratio of heat produced is 1:4.
11.	1	Voltage (V) = 220 V
		Current $(I) = 0.5A$. The voltage and current of a bulb are given, the power is calculated through the derived formula of Power. And we know that
		Power = Voltage × Current $P = 220 \times 0.5$
		$P = 220 \times 0.5$ $P = 22 \times 0.5$
		P = 110W
		Thus, the required power is 110 W
12.	2	Power of the electric refrigerator, $P = 400 \text{ W} = \frac{400}{1000} \text{ kW} = 0.4 \text{ kW}$
		Time for which the refrigerator operates, $t = 30 \times 8 \text{ h} = 240 \text{ h}$
		$\therefore \text{Energy consumed} = P \times t$
		$= 0.4 \text{ kW} \times 240 \text{ h}$
		= 96kWh
		Cost of the energy to operate refrigerator at a rate of Rs 3.00 per kWh = $96 \times$
		3.00 = Rs288.00.
13.	4	The correct statement describing the magnetic field near a long, straight current carrying conductor is: The magnetic lines of force are in concentric circles with the wire as the center, in a plane perpendicular to the conductor.
14.	3	Producing induced current in a coil due to relative motion between a magnet and
		the coil.
15.	3	Nuclear energy. The energy required to fuse the lighter nuclei is provided by fission reactions. In this reaction there is no need of sunlight Therefore nuclear energy is not ultimately derived from Sun's energy. Geothermal energy, wind
		energy, and bio-mass are all ultimately derived from solar energy.
16.	1	Baking powder contains sodium hydrogen carbonate and tartaric acid which react in the presence of water to give CO_2
17.	2	The solution with pH more than 7 are basic in nature hence solution with pH 8.6
		has less concentration of H^+
		Ion and more concentration of OH^- ions

18.	4	Plaster of Paris is obtained by heating gypsum to a 100 °C
19.	1	
		$Pb(NO_3)_2 (aq) + 2KI(aq) \rightarrow PbI_2(\downarrow) + 2KNO_3 (aq)$
		Pbl ₂ is yellow precipitate.
20.	1	In an endothermic reaction heat is absorbed
21.	4	In this reaction both $AgNO_3$ and $NaCl$ exchange their ions to form new
		compounds $AgCl$ (precipitate) and $NaNO_3$
		Hence it shows both double displacement and precipitation
22.	3	$2 HNO_3 + Ca(OH)_2 \rightarrow Ca(NO_3)_2 + 2 H_2O$
23.	2	$Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$
24.	4	Sodium is highly reactive so it cannot be purified by electrolytic refining
25.	3	All the members of homologous series of alkynes have the general formula
		C_nH_{2n-2}
		Example propyne (C_3H_4)
26.	2	
		$C_2H_4 + H_2 \xrightarrow{\text{NiPd}} C_2H_6,$
27.	2	The IUPAC name of the compound $CH_2 = C(CH_3)_2$ is
		2-Methylprop-1-ene
28.	4	A redox reaction is the one in which one substance is oxidised while the other is
		reduced
29.	1	CO_2 gas is evolved when acids react with metal carbonates
20		
30.	3	Sodium metal that reacts with cold water to form sodium hydroxide
31.	3	Small intestine is the site for complete digestion of carbohydrates, proteins and
22	1	fats.
32. 33.	1	The O ₂ is less soluble than CO ₂ in water.
34.	1 1	Forebrain is the main thinking part of the brain. Growth hormone- Pituitary gland
54.	1	Adrenaline- Adrenal gland
		Androgens- Testes
		Estrogen- Ovary
35.	1	The disease Kala-Azar is caused by Leishmania.
36.	2	Leishmania shows binary fission.
37.	2	Spore formation is observed in Rhizophus.
38.	3	23 pairs of chromosomes are present in humans.
39.	1	The ratio of pure tall plants to pure dwarf plants in the F2 generation
		is 1:1.
40.	4	Offsprings inherit chromosomes from both the parents. The male offspring will
		inherit X chromosome from mother and Y chromosome from the father. The
		female offspring will inherit one X chromosome from mother and one X
		chromosome from father.
41.	2	According to Darwin, evolution takes place due to Natural selection.
42.	2	According to Haldane the origin of life is from Simple inorganic molecules.
43.	1	Evolution of wild cabbage is termed as Artificial selection.
44.	3	The modern day humans have their ancestors lived is Africa.
45.	1	Decomposers convert organic material into inorganic material.
46.	1	1% of solar energy captured by green plants present in the terrestrial ecosystem.
47.	1 2	UNEP - United nations environment programme. 'Vulbe' is the ancient water horwesting structure were made in Himschel Bradesh
48.	3	'Kulhs' is the ancient water harvesting structure were made in Himachal Pradesh.
49.	2	Amrita Devi Bishnoi sacrificed her life to protect Khejri trees. The Tehri dam is constructed on Piver Phagirethi
50. 51.	2	The Tehri dam is constructed on River Bhagirathi.
31.	2	$140 = 2 \times 2 \times 5 \times 7 = 2^2 \times 5 \times 7$

52.	3	$(-1)^n + (-1)^{4n} = 0$ will be possible, when n is any odd natural number.
53.	4	$(-1)^n + (-1)^{4n} = 0$ will be possible, when n is any odd natural number. $3^{13} - 3^{10} = 3^{10}(3^3 - 1) = 3^{10}(26) = 3^{10} \times 2 \times 13$
		Hence $3^{13} - 3^{10}$ is divisible by 2,3 and 13
54.	1	Prime factorisation of 280 and 674 are
		$280 = 2 \times 2 \times 5 \times 7 = 2^3 \times 5 \times 7$
		$674 = 2 \times 337$
		$\therefore H.C.F(280,674) = 2$
55.	3	$\therefore H. C. F (280,674) = 2$ Since $L. C. M(a, b) = \frac{a \times b}{H. C. F (a, b)} = \frac{1800}{12} = 150$
56.	3	Since power of x in $x + \frac{1}{x}$ is -1 . Therefore, it is not a polynomial.
57.	3	$p(-1) = 3(-1)^4 - 5(-1)^3 + (-1)^2 + 8 = 17$
58.	3	3, because it is the highest power of variable in the polynomial $y^3 - 2y^2 -$
		$\sqrt{3}y + \frac{1}{2}$
59.	2	
60.	1	$x^{2} - (sum of the zeroes)x + (product of the zeroes) = x^{2} - 2x - 15$ $\alpha + \beta = -\frac{2}{k}, \alpha\beta = \frac{3k}{k} = 3$
		Since, $\alpha + \beta = \alpha \beta \Rightarrow -\frac{2}{k} = 3 \Rightarrow k = -\frac{2}{3}$
61.	2	For $x = 2, y = 1$,
		$x + ky = 5 \Rightarrow 2 + k = 5 \Rightarrow k = 3$
62.	1	The pair of linear equations $2kx + 5y = 7.6x - 5y = 11$ has a unique solution if
		$\begin{vmatrix} \frac{a_1}{a_2} \neq \frac{b_1}{b_2} \Rightarrow \frac{2k}{6} \neq \frac{5}{-5} \Rightarrow k \neq 3 \end{vmatrix}$
63.	2	The pair of linear equations $2x + 5y = k$ and $kx + 15y = 18$ has infinitely many
	_	solutions if $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \Rightarrow \frac{2}{k} = \frac{5}{15} = -\frac{k}{-18} \Rightarrow k = 6$
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6.4	1	a. h.
64.	1	As $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$, pair of equations has unique solution
65.	4	Given lines are parallel
66.	1	Here, $a = 6, b = 7, c = -10$
		$\therefore D = b^2 - 4ac = 289 > 0$
		$x = \frac{-b \pm \sqrt{D}}{2a} \Rightarrow x = \frac{5}{6} \text{ or } -2$
67.	2	$k^2 + 4k + 3 = 0 \Rightarrow k = -1, -3$
68.	3	$k^{2} + 4k + 3 = 0 \Rightarrow k = -1, -3$ $64x^{2} - 1 = 0 \Rightarrow x = \pm \frac{1}{8}$
69.	<u>1</u> 2	$D = b^2 - 4ac = (-4)^2 - 4(3)(-2) = 40$
70.	2	Since roots are real and distinct so, $D > 0 \Rightarrow (4)^2 - 4(1)(-k) > 0 \Rightarrow$
71.	2	$4(4+k) > 0 \Rightarrow k > -4$ Explanation: $a = 10$, $d = 10$
/1.	4	
		$a_1 = a = 10$
		$a_2 = a_1 + d = 10 + 10 = 20$
		$a_3 = a_2 + d = 20 + 10 = 30$
		$a_4 = a_3 + d = 30 + 10 = 40$
72.	3	First term, $a = 3$
		Common difference, d = Second term – First term
		$\Rightarrow 1-3=-2$
		\Rightarrow d = -2
73.	3	$a_2 = 13$ and
'	•	
		$a_4 = 3$

		The nth term of an AP;
		$a_n = a + (n-1) d$
		$a_2 = a + (2-1)d$
		13 = a+d(i)
		$a_4 = a + (4-1)d$
		3 = a+3d(ii)
		Subtracting equation (i) from (ii), we get,
		-10 = 2d
		d = -5
		Now put value of d in equation 1
		13 = a + (-5)
		a = 18 (first term)
		$a_3 = 18 + (3-1)(-5) = 18 + 2(-5) = 18 - 10 = 8$ (third term).
74.	2	First term = -3 and second term = 4
		a = -3
		d = 4-a = 4-(-3) = 7
75.	1	a ₂₁ =a+(21-1)d=-3+(20)7=-3+140=137 Given AP: 5, 8, 11, 14,
75.	•	First term = $a = 5$
		Common difference = $d = 8 - 5 = 3$
		nth term of an AP = $a_n = a + (n-1)d$
		Now, 10th term = $a_{10} = a + (10 - 1)d = 5 + 9(3) = 5 + 27 = 32$
76.	1	Perimeter of triangle = sum of all its sides
		P = 30 + 40 + x
		100=70+x
77		x=30 cm
77.	1	The height of the equilateral triangle ABC divides the base into two equal parts at point D.
		Therefore,
		BD=DC= 2.5 cm
		In triangle ABD, using Pythagoras theorem,
		$AB^2 = AD^2 + BD^2$
		$5^2 = AD^2 + 2.5^2$
		$AD^2 = 25-6.25$
		$AD^2=18.75$
		AD=4.33 cm
78.	4	: Let ABC and DEF are two similar triangles, such that,
		$\Delta ABC \sim \Delta DEF$

		And $AB/DE = AC/DF = BC/EF = 4/9$
		As the ratio of the areas of these triangles will be equal to the square of the ratio of the corresponding sides,
		$\therefore \text{Area}(\Delta ABC)/\text{Area}(\Delta DEF) = AB^2/DE^2$
79.	1	:. Area(\triangle ABC)/Area(\triangle DEF) = $(4/9)^2 = 16/81 = 16$: 81 By distance formula, we know:
	_	$\sqrt{(-1-2)^2 + (x+2)^2} = 5 \Rightarrow 9 + (x+2)^2 = 25 \Rightarrow (x+2)^2 = 16$
		Take square root on both the sides,
		2 + x = 4
		x = 2
80.	3	As per midpoint formula, we know;
		x-coordinate of the midpoint = $[2 + (-2)]/2 = 0/2 = 0$
		y-coordinate of the midpoint = $[4 + (-4)]/2 = 0/2 = 0$
		Hence, (0, 0) is the midpoint of AB.
81.	2	The distance of a point from the x-axis is equal to the ordinate of the point.
82.	2	AB = 24 cm and BC = 7 cm
		tan C = Opposite side/Adjacent side
02	2	$\tan C = 24/7$
83.	3	$\sin 30^\circ = \frac{1}{2}$, $\sin 60^\circ = \frac{\sqrt{3}}{2}$, $\cos 30^\circ = \frac{\sqrt{3}}{2}$ and $\cos 60^\circ = \frac{1}{2}$
		Putting these values, we get:
		$(\frac{1}{2}+\frac{1}{2})-(\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2})$
		$=1-[(2\sqrt{3})/2]$
		$=1-\sqrt{3}$
84.	3	By trigonometry identities, we know:
		$1 + \tan^2 X = \sec^2 X$
		And sec $X = 1/\cos X = 1/(2/3) = 3/2$
		Hence,
		$1 + \tan^2 X = (3/2)^2 = 9/4$
		$\tan^2 X = (9/4) - 1 = 5/4$
85.	1	$\tan X = \sqrt{5/2}$ $\tan 30^\circ = 1/\sqrt{3}$
		Putting this value we get;
86.	2	$ [2(1/\sqrt{3})]/[1 + (1/\sqrt{3})^2] = (2/\sqrt{3})/(4/3) = 6/4\sqrt{3} = \sqrt{3}/2 = \sin 60^\circ $ $ \sin 45^\circ + \cos 45^\circ = (1/\sqrt{2}) + (1/\sqrt{2}) $
		$=(1+1)/\sqrt{2}$
		$=2/\sqrt{2}$
		$= (\sqrt{2} \cdot \sqrt{2})/\sqrt{2}$
87.	3	$= \sqrt{2}$ We know, for an angle of elevation θ,
U .		5 miletty, 101 wil wings 01 010 twitter 0,

		ton 0 - Unight of building/Distance from the point
		$\tan \theta = \text{Height of building/Distance from the point}$
		If we increase both the value of the angle of elevation remains unchanged.
88.	1	We know:
		tan (angle of elevation) = height of tower/its distance from the point
		$\tan 60^{\circ} = h/15$
		$\sqrt{3} = h/15$
		$h = 15\sqrt{3}$
89.	1	A tangent touches the circle only on its boundary and do not cross through it.
90.	3	If the angle between two radii of a circle is 110° , then the angle between tangents is $180^{\circ} - 110^{\circ} = 70^{\circ}$. (By circles and tangents properties)
91.	3	Radius = 5cm
02		Area = πr^2 = 3.14 x 5 x 5 = 78.5 sq.cm
92.	2	Given,
		Side of square $= 8 \text{ cm}$
		Diameter of a circle = side of square = 8 cm
		Therefore, Radius of circle = 4 cm
		Area of circle= $\pi(4)^2 = \pi (4)^2 = 16\pi \text{ cm}^2$
93.	2	Area of circle= $\pi(4)^2$ = $\pi(4)^2$ = 16π cm ² $a^3 = 2744 = 2^3 \times 7^3 \Rightarrow a = (2 \times 7) = 14cm$
		$\therefore S. A = 6 \times 14^2 = 1176 cm^2$
94.	4	$\frac{total\ surface\ area}{Lateral\ surface\ area} = \frac{2\pi r(h+r)}{2\pi rh} = \frac{h+r}{h} = \frac{(20+80)}{20} = \frac{5}{1}$
95.	2	
95.	4	Let the number of spherical balls of radius 1cm be n .
		Total volume = $n \frac{4}{3} \cdot \pi$. 1^3 = Volume of bigger sphere
		$\Rightarrow n \frac{4}{3} \cdot \pi \cdot 1^3 = \frac{4}{3} \cdot \pi \cdot 8^3 \Rightarrow n = 512$
96.	3	If we join two hemispheres of same radius along their bases, then we get a Sphere.
97.	1	If r is the radius of the sphere, then the surface area of the sphere is given by $4 \pi r^2$
98.	2	$mean = \frac{7+7+5+7+x}{5} = \frac{26+x}{5}$
		Here mode= 7
		It is given that, mean=mode=median
		$\Rightarrow \frac{26+x}{5} = 7 \Rightarrow 26+x = 35 \Rightarrow x = 9$
99.	2	If E_1, E_2, \dots, E_n are elementary events, then $p(E_1) + p(E_2) + \dots + p(E_n) = 1$
100.	2	The probability lies between 0 and 1. Hence, it cannot be negative.
100.		The producting field outs of the art of the production