MODEL QUESTION PAPER OF APGET SCHOLARSHIP 2024-25 (FOR ICSE SYLLABUS)

- 1. A force of 10 N acts on a body of mass 0.5 kg for 0.25 s starting from rest. What is its momentum now? (a) 0.25 Ns (b) 2.5 Ns (c) 0.5 Ns (d) 0.75 Ns 2. A batsman hits back at ball straight in the direction of the bowler without changing its initial speed of
- 12 ms⁻¹. If the mass of the ball is 0.15 kg, find the impulse imparted to the ball. (Assume linear motion of the ball) (a) 1.8 N - s(b) 3.6 N - s(c) 3.6 N - m(d) 1.8 N - m
- 3. A 100 kg gun fires a ball of 1 kg horizontally from a cliff of height 500 m. It falls on the ground at a distance of 400 m from the bottom of the cliff. The recoil velocity of the gun is (take, $g = 10 \text{ ms}^{-2}$)

(a)
$$0.2 \text{ ms}^{-1}$$
. (b) 0.4 ms^{-1} (c) 0.6 ms^{-1}

- 4. A force of 10 N is applied on an object of mass 2 kg placed on a rough surface having coefficient of friction equal to 0.2. Work done by applied force in 1 s is (b) 240 J (a) 120 J (c) 250 J
- 5. A 10 kg brick moves along X-axis. Its acceleration as a function of its position is shown in figure. What is the net work performed on the brick by the force causing the acceleration as the brick moves from x = 0 to x = 8.0 m? (a) 400 J (b) 800 J

(d) 100 J

SUBJECT (PHYSICS / CHEMISTRY

MATHEMATICS / BIOLOGY)

- 6. A bullet of mass 20 g is moving with a speed of 150 ms^{-1} . It strikes a target and is brought to rest after piercing 10 cm into it. Calculate the average force of resistance offered by the target. (a) 2500 N (b) 2000 J (c) 2250 N (d) 2100 J
- 7. A body of mass 2 kg lifted at a height of 16 m from the surface of earth. The potential energy of the body at given height, is [take, $g = 10 \text{ m/s}^2$] (a) 640 J (b) 320 J (d) 160 J (c) 80 J
- 8. A one kilowatt motor is used to pump water from a well 10 m deep. The quantity of water pumped out per second is nearly (d) 1000 kg
- (c) 100 kg (a) 1 kg (b) 10 kg 9. On centigrade or Celsius scale (°C), the temperature of a body increases by 30°C. The increase in emperature on Fahrenheit scale (°F) is

(a) 50° (b) 40°

(c) 200 J

(c) 30°

- 10. Three rods made of the same material and having the same crosssection have been joined as shown in the figure. Each rod is of the same length. The left and right ends are kept at 0°C and 90°C, respectively. The temperature of the junction of the three rods will be
 - (a) 45°C (b) 90°C
 - (c) 30°C (d) 60°C

(d) 54° 90°C 0°C c 90°C

(d) 100 J

(d) 0.8 ms^{-1}

11.	0.15 kg of ice at 0°C temperature is 6.7°C. (a) 3.34×10^5 Jkg ⁻¹ (c) 3.34×10^2 lkg ⁻¹	is mixed with 0 Heat of fusion ((b) 3.3 (d) 3.3	1.30 kg of y of ice is (g $4 \times 10^4 \text{ Jkg}$ $4 \times 10^6 \text{ Jkg}$	water at 50°C iven, specific g ⁻¹ g ⁻¹	in a contair heat of wat	ner. The re er is 4186	sulting Jkg ⁻¹ K ⁻¹)	
12.	Two cars moving in c respectively. The drive of (a) 350 Hz	opposite direction ver of the first can f the second car (b) 361 Hz	4×10^{-1} kproad ar blows a is [velocit]	b ch each other horn having a y of sound is 3) 411 Hz	with speed frequency 340 m/s] (d) 4	of 22 m/s 400 Hz, tl 48 Hz	s and 16.5 m hen the frequ	ı/s, ıency
13.	Twenty million electric	rons reaches from	m point X	to point Y in t	wo micro	10 112	- e-	
	is	le figure. Direct			c current	Ŷ		x
	(a) 1.5×10^{-10} A from	M to Y (b) 1.	6×10^{-6}	A from Y to X				
	(c) 1.5×10^{-13} A from	om Y to X (d) 1.	6×10^{-4}	A from X to Y				
14.	The current in a wire	varies with time	e according	g to the equati	on $i = 4 + $	2t, where	<i>i</i> is in ampe	re and
	t is in second. The qu	antity of charge	which pa	sses through a	cross-secti	on of the	wire during t	he
	time $t = 2$ s to $t = 6$	s is						
	(a) 40C	(b) 48C	(c)) 38C	(d) 4	3C		
15.	The resistance of a 1	0 m long wire is	s 10Ω. Its l	ength is increa	ased by 25 ^o	% by stret	ching the wi	re
	uniformly The resista	nce of wire will	l change to	,				
	(a) 12.5Ω	(b) 14.5Ω	(c)) 15.6Ω	(d) 1	6.6Ω		
16.	The equivalent resista	ance of <i>n</i> resisto	ors each of	same resistan	ce when co	nnected in	series is R .	If the
	same resistances are	connected in par	rallel, the e	equivalent resi	stances wil	l be		
	(a) R/n^2	(b) <i>R/n</i>	(c)	$n^2 R$	(d) <i>n</i>	R		
17.	The internal resistance	e of a 2.1 V cell	l which giv	ves a current o	f 0.2 A thro	ough a res	istance of 10	Ω is
	(a) 0.2Ω	(b) 0.5Ω	(c)	0.8Ω	(d) 1	.0Ω		
18.	When a charged parti	cle moves perpe	endicular t	o the region of	of magnetic	field, then	1	
	(a) magnitude of its v	elocity keeps or	n changing	(b) veloc	ity of partio	cle remain	s constant	
	(c) direction of mome	entum keeps on	changing	(d) kinet	ic energy of	f particle l	keeps on cha	nging
19.	If two parallel curren	t-carrying condu	uctors plac	ed 1 m apart i	n vacuum a	are placed	such that ea	ch
	carries 1 A current, the 2×40^{-7} N	ien there is a foi	rce of	2.4.4.7.11		1 .1		
	(a) 2×10^{-7} N per m	etre of length	(b)	2×10^{7} N pc	er metre of	length		
20	(c) 9×10^{5} N per me	tre of length	(d))9×10 [°] Nj	per metre o	f length		
20.	A moving coil galvar	iometer is an ins	strument w	hich				
	(a) is used to measure (b) is used to measure	e EMF						
	(b) is used to measure (a) is used to measure	e potential diffe	rence					
	(c) is used to measure (d) is a deflection ins	trumont which a	rives a def	laction when	ourrant fla	we through	th its soil	
21	A concave mirror has	a radius of cur	vature of 2	0 cm The im	age of a ob	iect forme	d in mirror i	° 2 20
21.	times the size of the <i>c</i>	biect How far	is the mirr	or from the ob	uge of a obj			5 2.50
	(a) 5.5 cm	(b) 40 cm		6 cm	(d)15	Sem		
22	When an object lying	in a denser me	dium is ob	served from ra	re medium	then real	depth of ob	iect is
	(a) more than that ob	served	(b) less th	an that observ	red	, men reur	separ or ou	
	(c) equals to observed	d depth	(d) depen	ds on angle of	vision			
	() - <u>1</u>	. I	(-) P • II					

23.	The ratio $\frac{\text{real depth}}{\text{apparent depth}}$ is equal to							
	(a) refractive index of denser medium with respect to air							
	b) refractive index of denser medium with respect to rarer medium							
	(c) refractive index of rare medium with res	spect to air						
	(d) refractive index of rare medium with res	spect to denser medium	L					
24.	Mass of nucleus is							
	(a) equal to mass of nucleons	(b) more than mass of	f nucleons					
	(c) less than mass of nucleons	(d) may be more or le	ess, depends on size of nucleus					
25.	Binding energy (E_b) is		-					
	(a) energy required to separate nucleus from	n its atoms						
	(b) energy required to break a nucleus into	its nucleons						
	(c) energy required to remove all electrons	of the atom						
	(d) energy required to break an atom into el	lectrons, protons and ne	eutrons					
26.	Among the period-2 element, the element v	which has high electron	affinity is					
	(a) Lithium (b) Carbon	(c) Chlorine	(d) Fluorine					
27.	Ionisation potential increases over a period	from left to right becau	use the:					
	(a) Atomic radius and nuclear charge increa	ases						
	(b) Atomic radius and nuclear charge decre	ases						
	(c) Atomic radius increases and nuclear cha	arge decreases						
	(d) Atomic radius decreases and nuclear ch	arge increases						
28.	Element M forms a chloride with the formu	Ila MCl_2 which is a soli	id with high melting point. M					
	would most likely be in the group in which	is placed.						
• •	(a) Na (b) Mg	(c) Al	(d) Si					
29.	The molecule which contains a triple covale	ent bond is:						
	(a) Ammonia (b) Methane	(c) Water	(d) Nitrogen					
30.	The acid which contains four hydrogen ator	ms is						
	(a) Formic (b) Sulphuric	(c) Nitric	(d) Acetic-acid					
31.	When red litmus solution is treated with H	NO_3 , the color of red li	tmus solution changes to					
22	(a) Blue (b) Purple	(c) No color change	(d) Green					
32.	Which of the following contains maximum (a) $A = a = f Q$ (b) $A = a = f N H$	number of molecules: (a) $4 \propto of CO$	d) $4 \propto of SQ$					
22	(a) 4 g of O_2 (b) 4 g of NH_3	$(C) 4 g OI C U_2 \qquad ($	d) 4 g of $3O_2$					
33.	A gas cylinder of capacity of 20 am ⁻¹ s fille	ed with gas X the mass	of which is 10 g. when the same					
	cynnder is inied with hydrogen gas at the s	ame temperature and pr	ressure the mass of the hydrogen is					
	2g, hence the relative molecular mass of the	e gas 1s:						
24	(a) 5 (b) 10	(c) 15	(d) 20					
34.	Oxygen oxidizes ethyne to carbon dioxide a	and water as shown by	the equation:					
	$2C_2H_2 + 5O_2 \rightarrow 4CO_2 + 2H_2O$							
	What volume of ethyne gas at s.t.p is requir	red to produce 8.4 dm ³	of carbon dioxide at STP?					
	[H=1, C=12, O=16]							
	(a) 4.2 (b) 5.6	(c) 3.7	(d) 7.2					
35.	Identify the weak electrolyte from the follo	wing:						
	(a) Sodium chloride solution	(b) Dilute hydrochlor	ic acid					
	(c) Dilute sulphuric acid (d) Aq. Acetic acid							

36. Match the following in column A with the correct answer from the choice given in column B:

Column A	Co	olumn B	
1. Ammonium hydro	oxide (i) Contain	ns only ions	
2. Dilute hydrochlor	ic acid (ii) Contai	ns only molecu	les
3. Carbon tetrachlor	ide (iii) Conta	ins ions and mo	blecules
(a) 1 – (<i>ii</i>), 2 – (<i>iii</i>), 3	-(i)	(b) 1 − (<i>iii</i>),	2 - (i), 3 - (ii)
(c) $1 - (i), 2 - (iii), 3$	- (<i>ii</i>)	(d) $1 - (ii), 2$	2 - (i), 3 - (iii)
37. The metal other than all	uminium, which has	a strong affinit	y for oxygen is:
(a) Copper (b) Magnesium	(c) Silver	(d) Gold
38. Brass is an alloy of:			
(a) Copper and tin	(b) Copper	and zinc	
(c) Zinc and lead	(d) Lead an	nd tin	
39. Name the gas produced	when excess ammor	nia reacts with o	chlorine.
(a) N_2 (b) <i>Cl</i> ₂	(c) H_2	(d) O_2
40. Lead nitrate decompose	es on heating to give:		
(a) NO (b) <i>N</i> ₂ <i>O</i>	(c) <i>NO</i> ₂	(d) $N_2 O_5$
41. Identify the gas evolved	d when sulphur reacts	s with concentra	ated nitric acid
(a) SO_3 (b) <i>SO</i> ₂	(c) N_2	(d) <i>NO</i> ₂
42. In the given equation : S	$S + 2H_2SO_4 \rightarrow 3SO_2$	$+ 2H_2O$: Iden	tify the role played by conc.
H_2SO_4			
(a) Non-volatile acid	(b) Ox	idizing agent	
(c) Dehydrating agent	(d) No	one of the above	e
43. A hydrocarbon of the g	eneral formula $C_n H_2$	_n is	
(a) $C_{15}H_{30}$ (b) $C_{12}H_{26}$	(c) $C_8 H_{20}$	(d) $C_6 H_{14}$
44. Propan-1-ol and Propa	n-2-ol are		
(a) Position isomers (b) Chain isomers	(c) Homologo	us (d) Functional-group isomers
45. Compound X is bubble	d through bromine di	issolved in CCl	4; X is
Br_2/CCL_4 CH_2	-Br		
$X \xrightarrow{27} $	_		
CH ₂	-Br		
(a) Ethane (b) Ethene	(c) Ethyne	(d) Propane
46. Substitution reactions a	re characteristic reac	tions of	
(a) Alkane (b) Alkene	(c) Alkyne	(d) None of the above
4/. An organic weak acid is	S	()) ' () 1	
(a) Formic acid (b) Sulphuric acid	(c) Nitric acid	(d) Hydrochloric acid
48. The functional group pi	resent in acetic acid i	s:	
(a) Ketonic $C = 0$ (b) Hydroxyl– <i>OH</i>	(c) Aldehydic	-CHO (d) Carboxyl $-COOH$
/ $/$ $/$ $/$ $/$ $/$ $/$ $/$ $/$ $/$	acetylene is:		
(a) Propage	(b) Pronyne	(c) Ethene	(d) Ethyne
50 When acid reacts with a	alcohol in the present	(c) Ethene	Ω_4 is formed
(a) Ester	h) Alkane	(c) Alkene	(d) None of the above
51 Find the amount of the	bill when the MRP of	of the product is	11 000 and discount percent provided
30% and GST charged	18%?	i the product is	11,000, and discount percent provided
(a) Rs. 9090 (b) Rs. 9086	(c) Rs. 9080	(d) Rs. 9085
52. John deposited Rs. 500	00 in a bank for 1 ye	ar and paying a	n annual interest rate of 14%,
compounded quarterly.	What is the maturity	amount?	
(a) 84,448 (b) 80,448	(c) 84,458	(d) 81,448

is

53.	The perimeter of a sq	uare is 44 cm. Then it's	s area is sq. cm	
	(a) 121	(b) 56	(c) 76 (d) 8	38
54.	Which of the following	ng is not a solution of 4	a + b = 16	
	(a) (4, 0)	(b) (3, 4)	(c) (5, -4) (d) ((3, 2)
55.	If a and b are the root	as of the equation $6x^2$ -	$+4x - 2 = 0$, then $\frac{a}{b} + \frac{b}{a} =$	
	$(a) - \frac{10}{10}$	(b) $\frac{10}{10}$	$(c) - \frac{10}{10}$ $(d) \frac{1}{2}$	10
	9	3	3	9
56.	The sum and product	of the roots of the equa	ation $kx^2 + 6x + 4k = 0$ ar	e equal, then the value of k is
	$(a) - \frac{3}{2}$	(b) $\frac{3}{2}$	(c) $\frac{2}{2}$ (d) -	$\underline{2}$
-7	$\binom{\alpha}{2}$	$\binom{0}{2}$	$(0)_3$	3
57.	ratio 5 : 3. What are t	heir present ages?	i în the ratio as 6: 4. Five ye	ars ago their ages were in the
	(a) 25 and 15 year	(b) 26 and 16 years	(c) 28 and 18 years	(d) 30 and 20 years
58	For which value of p	given ratios will be equ	(0) 20 and 10 Jeans (a) $(3p-5):2 \text{ and } 1:(8p-6)$	(a) 50 and 20 years
20.	(a) 1	(h) 2	(c) 3	(d) none of these
59.	If $(x+3)$ is a factor of	$x^2 + 5x + a$, then the y	value of a is	
	(a) 2	(b) 0	(c) 4	(d) 6
60.	If $x + a$ is a common	factor of expressions f	$f(x) = x^{2} + px + q$ and $g(x) =$	$x^{2} + mx + n$: Then find the
	value of a.	I I I I I I I I I I I I I I I I I I I		,
	(a) $\frac{n-q}{d}$	(b) $\frac{p-q}{p-q}$	(c) $\frac{n-p}{2}$	(d) none of these
	(^w m-p	m-n	(°) m-q	
61.	If $Q = \begin{bmatrix} 2 & -5 \\ 5 & 6 \end{bmatrix}$, and	$R = \begin{bmatrix} 0 & 15 \\ 19 & -15 \end{bmatrix}$, find	the matrix P, if $PQ = R$.	
	$(a) \begin{bmatrix} -1 & 2 \end{bmatrix}$	(b) $\begin{bmatrix} 3 & -3 \end{bmatrix}$	$(c) \begin{bmatrix} 9 & 0 \end{bmatrix}$	(d) $\begin{bmatrix} 12 & 4 \end{bmatrix}$
			[2 -7]	
62.	The sum of first 6 ter	ms of an AP is 12 and s	sum of first 10 terms is 60.	tind the first term and
	common difference?		() 2 2	
(2)	(a) 3, 2	(b) 2, 3	(c) -3, 2	(d) -2, 3
63.	(a) 3, 2 The sum of 1stn term	(b) 2, 3 s of an AP is $2n^2 + 2n^2$	(c) -3, 2 a. Then sum of first 24 term	(d) -2, 3 s of the AP is
63.	(a) 3, 2 The sum of 1stn term (a) 1100 The slope of the line	(b) 2, 3 s of an AP is $2n^2 + 2n^2$ (b) 1200	(c) -3, 2 h. Then sum of first 24 term (c) 1300	(d) -2, 3 s of the AP is (d) 1453
63. 64.	(a) 3, 2 The sum of 1stn term (a) 1100 The slope of the line 2	(b) 2, 3 s of an AP is $2n^2 + 2n^2$ (b) 1200 2x - y = 5 is	(c) -3, 2 a. Then sum of first 24 term (c) 1300	(d) -2, 3 s of the AP is (d) 1453
63. 64.	(a) 3, 2 The sum of 1stn term (a) 1100 The slope of the line 2 (a) 0 The areas of two similar	(b) 2, 3 s of an AP is $2n^2 + 2n^2$ (b) 1200 2x - y = 5 is (b) 1	 (c) -3, 2 a. Then sum of first 24 term (c) 1300 (c) -1 (c) -1 	(d) -2, 3 s of the AP is (d) 1453 (d) 2
63. 64. 65.	(a) 3, 2 The sum of 1stn term (a) 1100 The slope of the line 2 (a) 0 The areas of two similar for triangle is 17 or	(b) 2, 3 s of an AP is $2n^2 + 2r$ (b) 1200 2x - y = 5 is (b) 1 lar triangles are 225 cr	 (c) -3, 2 a. Then sum of first 24 term (c) 1300 (c) -1 <i>n</i>² and 289 <i>cm</i>² respectivel 	 (d) -2, 3 s of the AP is (d) 1453 (d) 2 If the longest side of the
63. 64. 65.	(a) 3, 2 The sum of 1stn term (a) 1100 The slope of the line 2 (a) 0 The areas of two similarger triangle is 17 cm	(b) 2, 3 s of an AP is $2n^2 + 2r$ (b) 1200 2x - y = 5 is (b) 1 lar triangles are 225 <i>cr</i> m, find the longest side (b) 15 cm	 (c) -3, 2 a. Then sum of first 24 term (c) 1300 (c) -1 <i>n</i>² and 289 <i>cm</i>² respectively <i>c</i> of the smaller triangle. (c) 14 cm 	 (d) -2, 3 s of the AP is (d) 1453 (d) 2 (d) 1453 (d) 2 (e) 1453 (d) 2 (f) 1453 (d) 2
63. 64. 65.	 (a) 3, 2 (b) 3, 2 (c) 3, 2 (c) 4, 2 (c) 4, 100 (c) 4	(b) 2, 3 s of an AP is $2n^2 + 2r$ (b) 1200 2x - y = 5 is (b) 1 lar triangles are 225 <i>cr</i> m, find the longest side (b) 15 cm	 (c) -3, 2 a. Then sum of first 24 term (c) 1300 (c) -1 <i>n</i>² and 289 <i>cm</i>² respectivel <i>e</i> of the smaller triangle. (c) 14 cm (c) 14 cm 	 (d) -2, 3 s of the AP is (d) 1453 (d) 2 (d) None of the length of the
63. 64. 65.	 (a) 3, 2 (b) 3, 2 (c) 1100 (c) 1100 (c) 1100 (c) 1100 (c) 100 (c) 100<	(b) 2, 3 s of an AP is $2n^2 + 2r$ (b) 1200 2x - y = 5 is (b) 1 lar triangles are 225 <i>cr</i> m, find the longest side (b) 15 cm us of two concentric circle which touches the	 (c) -3, 2 a. Then sum of first 24 term (c) 1300 (c) -1 <i>n</i>² and 289 <i>cm</i>² respectivel <i>c</i> of the smaller triangle. (c) 14 cm arcles is 5 cm and 3 cm respectivelies 	 (d) -2, 3 s of the AP is (d) 1453 (d) 2 (d) None of these (ectively. The length of the
63.64.65.66.	 (a) 3, 2 (b) 3, 2 (c) 3, 2 (c) 4, 100 (c) 1100 (c) 100 (c) 100 (c) 16 cm (c) 16 cm<!--</td--><td>(b) 2, 3 s of an AP is $2n^2 + 2n$ (b) 1200 2x - y = 5 is (b) 1 lar triangles are 225 <i>cn</i> m, find the longest side (b) 15 cm us of two concentric circle which touches the (b) 10 cm</td><td> (c) -3, 2 a. Then sum of first 24 term (c) 1300 (c) -1 <i>n</i>² and 289 <i>cm</i>² respectively <i>m</i> of the smaller triangle. (c) 14 cm (c) 14 cm (c) 14 cm (c) 15 cm and 3 cm respectively </td><td> (d) -2, 3 s of the AP is (d) 1453 (d) 2 (d) None of the longest side of the (d) None of these ectively. The length of the (d) 18 cm </td>	(b) 2, 3 s of an AP is $2n^2 + 2n$ (b) 1200 2x - y = 5 is (b) 1 lar triangles are 225 <i>cn</i> m, find the longest side (b) 15 cm us of two concentric circle which touches the (b) 10 cm	 (c) -3, 2 a. Then sum of first 24 term (c) 1300 (c) -1 <i>n</i>² and 289 <i>cm</i>² respectively <i>m</i> of the smaller triangle. (c) 14 cm (c) 14 cm (c) 14 cm (c) 15 cm and 3 cm respectively 	 (d) -2, 3 s of the AP is (d) 1453 (d) 2 (d) None of the longest side of the (d) None of these ectively. The length of the (d) 18 cm
63.64.65.66.67.	 (a) 3, 2 The sum of 1stn term (a) 1100 The slope of the line 2 (a) 0 The areas of two similarger triangle is 17 cm (a) 16 cm The length of the radii chord of the larger ciri (a) 8 cm A well is to be made 1 	(b) 2, 3 s of an AP is $2n^2 + 2r$ (b) 1200 2x - y = 5 is (b) 1 lar triangles are 225 <i>cr</i> m, find the longest side (b) 15 cm us of two concentric ci rcle which touches the (b) 10 cm by digging out earth 42	 (c) -3, 2 a. Then sum of first 24 term (c) 1300 (c) -1 n² and 289 cm² respectively e of the smaller triangle. (c) 14 cm arcles is 5 cm and 3 cm respectively and 12 cm and 22 cm and 23 cm and 25 m in diameter 	 (d) -2, 3 s of the AP is (d) 1453 (d) 2 (d) None of these (d) None of these (d) 18 cm (eter. If a worker takes Rs 15
63.64.65.66.67.	common difference? (a) 3, 2 The sum of 1stn term (a) 1100 The slope of the line 1 (a) 0 The areas of two similarger triangle is 17 cm (a) 16 cm The length of the radii chord of the larger cin (a) 8 cm A well is to be made 1 to dig 10 m^3 of earth	(b) 2, 3 s of an AP is $2n^2 + 2n$ (b) 1200 2x - y = 5 is (b) 1 lar triangles are 225 <i>cn</i> m, find the longest side (b) 15 cm us of two concentric circle which touches the (b) 10 cm by digging out earth 42 find the total cost of o	(c) -3, 2 a. Then sum of first 24 term (c) 1300 (c) -1 n^2 and 289 cm^2 respectively e of the smaller triangle. (c) 14 cm arcles is 5 cm and 3 cm resp smaller circle is (c) 12 cm 2 m deep and 3.5 m in diamond digging out the well approximation	 (d) -2, 3 s of the AP is (d) 1453 (d) 2 (d) None of these (d) None of these (d) 18 cm eter. If a worker takes Rs 15 imately
63.64.65.66.67.	common difference? (a) 3, 2 The sum of 1stn term (a) 1100 The slope of the line 2 (a) 0 The areas of two similarger triangle is 17 cm (a) 16 cm The length of the radii chord of the larger cin (a) 8 cm A well is to be made 1 to dig 10 m^3 of earth (a) Rs, 606	(b) 2, 3 s of an AP is $2n^2 + 2r$ (b) 1200 2x - y = 5 is (b) 1 lar triangles are 225 <i>cr</i> m, find the longest side (b) 15 cm us of two concentric ci rcle which touches the (b) 10 cm by digging out earth 42 find the total cost of a (b) Rs. 506	 (c) -3, 2 a. Then sum of first 24 term (c) 1300 (c) -1 n² and 289 cm² respectively e of the smaller triangle. (c) 14 cm arcles is 5 cm and 3 cm respectively and 12 cm and 22 cm and 22 cm and 22 cm and 22 cm and 23 cm and 23 cm and 23 cm and 3 cm	 (d) -2, 3 s of the AP is (d) 1453 (d) 2 (d) None of these (d) None of these (d) 18 cm (eter. If a worker takes Rs 15 (imately (d) Rs, 404
 63. 64. 65. 66. 67. 68. 	common difference? (a) 3, 2 The sum of 1stn term (a) 1100 The slope of the line 1 (a) 0 The areas of two similarger triangle is 17 cm (a) 16 cm The length of the radii chord of the larger cin (a) 8 cm A well is to be made 1 to dig 10 m^3 of earth (a) Rs. 606 A circular tent is cylin	(b) 2, 3 s of an AP is $2n^2 + 2n$ (b) 1200 2x - y = 5 is (b) 1 lar triangles are 225 <i>cn</i> m, find the longest side (b) 15 cm us of two concentric circle which touches the (b) 10 cm by digging out earth 42 t, find the total cost of a (b) Rs. 506 ndrical up to a height o	 (c) -3, 2 a. Then sum of first 24 term (c) 1300 (c) -1 m² and 289 cm² respectively e of the smaller triangle. (c) 14 cm arcles is 5 cm and 3 cm respectively arcles is 5 cm and 3 cm respectively and 12 cm and 289 cm² respectively and 3 cm respectively and 3 cm respectively (c) 12 cm and eep and 3.5 m in diamond and and a conical above it. 	 (d) -2, 3 s of the AP is (d) 1453 (d) 2 (d) None of these (d) None of these (d) None of these (d) 18 cm eter. If a worker takes Rs 15 imately (d) Rs. 404 If the radius of the base is
63.64.65.66.67.68.	common difference? (a) 3, 2 The sum of 1stn term (a) 1100 The slope of the line 2 (a) 0 The areas of two similarger triangle is 17 cm (a) 16 cm The length of the radii chord of the larger cin (a) 8 cm A well is to be made 1 to dig 10 m^3 of earth (a) Rs. 606 A circular tent is cylin 52.5 m and the slant h	(b) 2, 3 s of an AP is $2n^2 + 2n$ (b) 1200 2x - y = 5 is (b) 1 lar triangles are 225 <i>cn</i> m, find the longest side (b) 15 cm us of two concentric ci rcle which touches the (b) 10 cm by digging out earth 42 find the total cost of a (b) Rs. 506 ndrical up to a height o neight of the conical pa	 (c) -3, 2 a. Then sum of first 24 term (c) 1300 (c) -1 n² and 289 cm² respectively the of the smaller triangle. (c) 14 cm a. (c) 14 cm a. (c) 14 cm a. (c) 12 cm b. m deep and 3.5 m in diamond the digging out the well approximation of the smaller circle is (c) Rs. 516 f 4 m and conical above it. The state of the smaller circle is 	 (d) -2, 3 s of the AP is (d) 1453 (d) 2 (d) None of these (d) None of these (d) 18 cm (eter. If a worker takes Rs 15 (imately (d) Rs. 404 (d) Rs. 404
63.64.65.66.67.68.	common difference? (a) 3, 2 The sum of 1stn term (a) 1100 The slope of the line 2 (a) 0 The areas of two similarger triangle is 17 cm (a) 16 cm The length of the radii chord of the larger circle (a) 8 cm A well is to be made 1 to dig 10 m^3 of earth (a) Rs. 606 A circular tent is cylin 52.5 m and the slant h (a) 10061 m ²	(b) 2, 3 s of an AP is $2n^2 + 2n$ (b) 1200 2x - y = 5 is (b) 1 lar triangles are 225 <i>cn</i> m, find the longest side (b) 15 cm us of two concentric circle which touches the (b) 10 cm by digging out earth 42 a, find the total cost of a (b) Rs. 506 ndrical up to a height o neight of the conical pa (b) 10065 m ²	(c) -3, 2 h. Then sum of first 24 term (c) 1300 (c) -1 n^2 and 289 cm^2 respectively e of the smaller triangle. (c) 14 cm frcles is 5 cm and 3 cm resp smaller circle is (c) 12 cm 2 m deep and 3.5 m in diamedigging out the well approxis (c) Rs. 516 f 4 m and conical above it. The second	 (d) -2, 3 s of the AP is (d) 1453 (d) 2 (d) None of these (d) None of these (d) None of these (d) 18 cm (eter. If a worker takes Rs 15 (d) Rs. 404 (f the radius of the base is (vas used in making the tent. (d) 10098 m²
 63. 64. 65. 66. 67. 68. 69. 	common difference? (a) 3, 2 The sum of 1stn term (a) 1100 The slope of the line 2 (a) 0 The areas of two similarger triangle is 17 cm (a) 16 cm The length of the radii chord of the larger cin (a) 8 cm A well is to be made 1 to dig 10 m^3 of earth (a) Rs. 606 A circular tent is cylin 52.5 m and the slant h (a) 10061 m ² (1+tanA+secA) (1+common circular tent)	(b) 2, 3 s of an AP is $2n^2 + 2n$ (b) 1200 2x - y = 5 is (b) 1 lar triangles are 225 <i>cn</i> m, find the longest side (b) 15 cm us of two concentric ci rcle which touches the (b) 10 cm by digging out earth 42 d, find the total cost of a (b) Rs. 506 ndrical up to a height o neight of the conical pa (b) 10065 m ² otA-cosecA) =	 (c) -3, 2 a. Then sum of first 24 term (c) 1300 (c) -1 n² and 289 cm² respectively the of the smaller triangle. (c) 14 cm (c) 14 cm (c) 14 cm (c) 12 cm 2 m deep and 3.5 m in diamond digging out the well approximation of the smaller circle is (c) Rs. 516 f 4 m and conical above it. If the state of the smaller circle is (c) 10066 m² 	 (d) -2, 3 s of the AP is (d) 1453 (d) 2 (e) If the longest side of the (f) None of these (g) None of these (h) Some of the se <
 63. 64. 65. 66. 67. 68. 69. 	common difference? (a) 3, 2 The sum of 1stn term (a) 1100 The slope of the line 2 (a) 0 The areas of two similar larger triangle is 17 cm (a) 16 cm The length of the radii chord of the larger circle (a) 8 cm A well is to be made 1 to dig 10 m^3 of earth (a) Rs. 606 A circular tent is cylin 52.5 m and the slant 1 (a) 10061 m ² (1+tanA+secA) (1+col)	(b) 2, 3 s of an AP is $2n^2 + 2n$ (b) 1200 2x - y = 5 is (b) 1 lar triangles are 225 <i>cn</i> m, find the longest side (b) 15 cm us of two concentric circle which touches the (b) 10 cm by digging out earth 42 a, find the total cost of a (b) Rs. 506 ndrical up to a height o neight of the conical pa (b) 10065 m ² otA-cosecA) = (b) 1	(c) -3, 2 h. Then sum of first 24 term (c) 1300 (c) -1 n^2 and 289 cm^2 respectively e of the smaller triangle. (c) 14 cm frcles is 5 cm and 3 cm resp smaller circle is (c) 12 cm 2 m deep and 3.5 m in diamedigging out the well approxis (c) Rs. 516 f 4 m and conical above it. The second	 (d) -2, 3 s of the AP is (d) 1453 (d) 2 (e) If the longest side of the (f) None of these (g) 18 cm (h) 10098 m² (h) 3
 63. 64. 65. 66. 67. 68. 69. 70 	common difference? (a) 3, 2 The sum of 1stn term (a) 1100 The slope of the line 2 (a) 0 The areas of two similar larger triangle is 17 cm (a) 16 cm The length of the radii chord of the larger cin (a) 8 cm A well is to be made 1 to dig 10 m^3 of earth (a) Rs. 606 A circular tent is cylin 52.5 m and the slant H (a) 10061 m ² (1+tanA+secA) (1+co (a) 0 Value of $\frac{1}{m^3}$	(b) 2, 3 s of an AP is $2n^2 + 2n$ (b) 1200 2x - y = 5 is (b) 1 lar triangles are 225 cn m, find the longest side (b) 15 cm us of two concentric ci rcle which touches the (b) 10 cm by digging out earth 42 d, find the total cost of a (b) Rs. 506 ndrical up to a height of height of the conical pa (b) 10065 m ² otA-cosecA) = (b) 1 $+ \frac{1}{10}$ is	 (c) -3, 2 a. Then sum of first 24 term (c) 1300 (c) -1 n² and 289 cm² respectively the of the smaller triangle. (c) 14 cm (c) 14 cm (c) 14 cm (c) 12 cm 2 m deep and 3.5 m in diamond digging out the well approximation of the smaller circle is (c) Rs. 516 f 4 m and conical above it. The state of the smaller circle is (c) 10066 m² (c) 2 	 (d) -2, 3 s of the AP is (d) 1453 (d) 2 (e) If the longest side of the (f) None of these (g) 18 cm (h) 10098 m² (h) 3
 63. 64. 65. 66. 67. 68. 69. 70. 	common difference? (a) 3, 2 The sum of 1stn term (a) 1100 The slope of the line 2 (a) 0 The areas of two similar larger triangle is 17 cm (a) 16 cm The length of the radii chord of the larger cin (a) 8 cm A well is to be made 1 to dig 10 m^3 of earth (a) Rs. 606 A circular tent is cylin 52.5 m and the slant H (a) 10061 m ² (1+tanA+secA) (1+co (a) 0 Value of $\frac{1}{1-cos(90^\circ-A)}$	(b) 2, 3 s of an AP is $2n^2 + 2n$ (b) 1200 2x - y = 5 is (b) 1 lar triangles are 225 cn m, find the longest side (b) 15 cm us of two concentric circle which touches the (b) 10 cm by digging out earth 42 a, find the total cost of a (b) Rs. 506 ndrical up to a height of neight of the conical pa (b) 10065 m ² otA-cosecA) = (b) 1 $+ \frac{1}{1+cos(90^{\circ}-A)}$ is	(c) -3, 2 h. Then sum of first 24 term (c) 1300 (c) -1 n^2 and 289 cm^2 respectively e of the smaller triangle. (c) 14 cm frcles is 5 cm and 3 cm resp smaller circle is (c) 12 cm 2 m deep and 3.5 m in diamedigging out the well approxis (c) Rs. 516 f 4 m and conical above it. In rt is 53 m, find the total can (c) 10066 m ² (c) 2	 (d) -2, 3 s of the AP is (d) 1453 (d) 2 (e) If the longest side of the (f) None of these (g) 18 cm (h) 100 m² (h) 3
 63. 64. 65. 66. 67. 68. 69. 70. 	common difference? (a) 3, 2 The sum of 1stn term (a) 1100 The slope of the line 2 (a) 0 The areas of two similar larger triangle is 17 cm (a) 16 cm The length of the radii chord of the larger cind (a) 8 cm A well is to be made 1 to dig 10 m^3 of earth (a) Rs. 606 A circular tent is cylind 52.5 m and the slant H (a) 10061 m ² (1+tanA+secA) (1+cod (a) 0 Value of $\frac{1}{1-cos(90^\circ-A)}$ (a) $\frac{2}{sin^2(90^\circ-A)}$	(b) 2, 3 s of an AP is $2n^2 + 2n$ (b) 1200 2x - y = 5 is (b) 1 lar triangles are 225 cn m, find the longest side (b) 15 cm us of two concentric ci rcle which touches the (b) 10 cm by digging out earth 42 d, find the total cost of a (b) Rs. 506 ndrical up to a height of height of the conical pa (b) 10065 m ² otA-cosecA) = (b) 1 $+ \frac{1}{1+\cos(90^{\circ}-A)}$ is (b) $\frac{2}{\cos^2(90^{\circ}-A)}$	(c) -3, 2 a. Then sum of first 24 term (c) 1300 (c) -1 n^2 and 289 cm^2 respectively e of the smaller triangle. (c) 14 cm fircles is 5 cm and 3 cm resp smaller circle is (c) 12 cm 2 m deep and 3.5 m in diamond digging out the well approxi- (c) Rs. 516 f 4 m and conical above it. 12 rt is 53 m, find the total can (c) 10066 m ² (c) 2 (c) $\frac{2}{\sin^2(90^\circ + A)}$	(d) -2, 3 s of the AP is (d) 1453 (d) 2 ly. If the longest side of the (d) None of these ectively. The length of the (d) 18 cm eter. If a worker takes Rs 15 imately (d) Rs. 404 If the radius of the base is twas used in making the tent. (d) 10098 m ² (d) 3 (d) $\frac{2}{\cos^2(90^\circ + A)}$
 63. 64. 65. 66. 67. 68. 69. 70. 71. 	common difference? (a) 3, 2 The sum of 1stn term (a) 1100 The slope of the line 2 (a) 0 The areas of two similar larger triangle is 17 cm (a) 16 cm The length of the radii chord of the larger circle (a) 8 cm A well is to be made 1 to dig 10 m^3 of earth (a) Rs. 606 A circular tent is cylin 52.5 m and the slant H (a) 10061 m ² (1+tanA+secA) (1+co (a) 0 Value of $\frac{1}{1-cos(90^\circ-A)}$ (a) $\frac{2}{sin^2(90^\circ-A)}$ What is the angle of e	(b) 2, 3 s of an AP is $2n^2 + 2n$ (b) 1200 2x - y = 5 is (b) 1 lar triangles are 225 cn m, find the longest side (b) 15 cm us of two concentric circle which touches the (b) 10 cm by digging out earth 42 a, find the total cost of a (b) Rs. 506 ndrical up to a height on neight of the conical pa (b) 10065 m ² otA-cosecA) = (b) 1 $+\frac{1}{1+cos(90^{\circ}-A)}$ is (b) $\frac{2}{cos^2(90^{\circ}-A)}$	(c) -3, 2 h. Then sum of first 24 term (c) 1300 (c) -1 n^2 and 289 cm^2 respectively e of the smaller triangle. (c) 14 cm fircles is 5 cm and 3 cm resp smaller circle is (c) 12 cm 2 m deep and 3.5 m in diamedigging out the well approxis (c) Rs. 516 f 4 m and conical above it. If rt is 53 m, find the total can (c) 10066 m ² (c) 2 (c) $\frac{2}{\sin^2(90^\circ + A)}$ en it casts the shadow of a s	(d) -2, 3 s of the AP is (d) 1453 (d) 2 ly. If the longest side of the (d) None of these ectively. The length of the (d) 18 cm eter. If a worker takes Rs 15 imately (d) Rs. 404 If the radius of the base is livas used in making the tent. (d) 10098 m ² (d) 3 (d) $\frac{2}{\cos^2(90^\circ + A)}$ stick standing perpendicularly
 63. 64. 65. 66. 67. 68. 69. 70. 71. 	common difference? (a) 3, 2 The sum of 1stn term (a) 1100 The slope of the line 2 (a) 0 The areas of two similar larger triangle is 17 cm (a) 16 cm The length of the radii chord of the larger cin (a) 8 cm A well is to be made 1 to dig 10 m^3 of earth (a) Rs. 606 A circular tent is cylin 52.5 m and the slant H (a) 10061 m ² (1+tanA+secA) (1+co (a) 0 Value of $\frac{1}{1-cos(90^\circ-A)}$ What is the angle of e on the ground of 1 m	(b) 2, 3 s of an AP is $2n^2 + 2n$ (b) 1200 2x - y = 5 is (b) 1 lar triangles are 225 <i>cn</i> m, find the longest side (b) 15 cm us of two concentric ci rcle which touches the (b) 10 cm by digging out earth 42 d, find the total cost of of (b) Rs. 506 ndrical up to a height of height of the conical pa (b) 10065 m ² otA-cosecA) = (b) 1 $+\frac{1}{1+\cos(90^{\circ}-A)}$ is (b) $\frac{2}{\cos^2(90^{\circ}-A)}$ elevation of the sun wh height is $\sqrt{3}m$?	(c) -3, 2 a. Then sum of first 24 term (c) 1300 (c) -1 n^2 and 289 cm^2 respectively e of the smaller triangle. (c) 14 cm fircles is 5 cm and 3 cm resp smaller circle is (c) 12 cm 2 m deep and 3.5 m in diamond digging out the well approxi- (c) Rs. 516 f 4 m and conical above it. If rt is 53 m, find the total can (c) 10066 m ² (c) 2 (c) $\frac{2}{\sin^2(90^\circ + A)}$ en it casts the shadow of a s	(d) -2, 3 s of the AP is (d) 1453 (d) 2 ly. If the longest side of the (d) None of these ectively. The length of the (d) 18 cm eter. If a worker takes Rs 15 imately (d) Rs. 404 If the radius of the base is twas used in making the tent. (d) 10098 m ² (d) 3 $(d) \frac{2}{\cos^2(90^\circ + A)}$ stick standing perpendicularly

72. W	Veight of few student	ts are given. Find the n	nedian weight. 28, 24.5	5, 20, 36.8, 24, 33.
(a	a) 28	(b) 28.5	(c) 26.25	(d) 24.5
73. A	histogram is a graph	nical representation of	which of the following	
(a	a) Ogive		(b) Frequency	Distribution
(c	c) Cumulative freque	ency distribution	(d) None of th	ese
74. Fr	rom a deck of well s	huffled 52 cards, the ca	ards that are multiple o	of 3 are eliminated. The probability
th	at a card is drawn is	either 6 or a face card	is	
(a	$(1)\frac{2}{5}$	(b) $\frac{3}{5}$	(c) $\frac{7}{10}$	(d) $\frac{3}{10}$
75. W	That is the number of	f outcomes in the samp	ble space for rolling a d	lice and tossing a coin together?
(a	a) 6	(b) 8	(c) 12	(d) 18
76. W	hich of the followin	g plastid stores starch?	?	
(a)Leucoplast	(b)Chromoplast	(c) Chloroplast	(d)Chromatoplast
77. To	onoplast is the cover	ring of which of the fol	lowing cell organelle	
(a)Mitochondria	(b)Vacuole	(c) Lysosome	(d)Ribosome
78. Tł	he replication of DN	A takes place during v	which phase of the cell	cycle?
(a)Interphase	(b)Prophase	(c) Metaphase	(d)Anaphase
79. Id	lentify the stage of c	ell cycle in the followi	ng image	

(a)Early metaphase (b)Early telophase (c) Late telophase (d)Late anaphase

- 80. Identify the incorrect pair from the following with respect organism and the number of chromosomes in it
 - (a) Lion- 38 chromosomes (b) Onion- 16 chromosomes
 - (c) Ascaris- 14 chromosomes (d) Mouse- 40 chromosomes
- 81. Which of the following is a blood disease caused by single gene mutation?(a)Haemophilia(b) Sickle cell anemia (c) Colour blindness(d)Albinism
- 82. Identify the incorrect statement from the following
 - (a)There is no net movement of molecules across the membrane in isotonic solution.
 - (b)Osmotic pressure is equal to the pressure required to nullify osmosis.
 - (c) In hypotonic solution, exosmosis takes place.
 - (d)In osmosis, water only transported to short distances.
- 83. Potometer is a device which measures the rate of
 - (a)Water intake by the plant (b)Water output by the plant
 - (c) Water dryness in plant (d)Both water input and output
- 84. The loss of water directly from the surface of leaf is called as
 - (a)Stomatal transpiration (b)Cuticular transpiration
 - (c) Lenticular transpiration (d)Mechanical transpiration
- 85. The light independent reactions occur in which part of the chloroplast?
- (a)Thylakoid (b)Grana (c) Stroma (d)Stromal lamellae
- 86. The transformation of several glucose molecules to produce starch is called as (a)Phosphorylation (b)Polymerization (c) Fixation (d)Photolysis

87. Match the column I with the column II

[Column I			Column II			
	1	Blood		i	Present in spleen and	_		
	-	21004		-	tonsils			
	2	Tissue fluid		ii	Present in arteries and			
					veins			
ĺ	3	Lymph		iii	Occupying the spaces			
					between the cells of			
					organs			
	(a)1-	ii, 2-iii, 3-i	(b)1-i, 2-ii,	3-iii	(c) 1-iii, 2-i, 3-ii	(d)1-iii, 2-ii, 3-i		
88	The	avaraga voluma	of blood in a	a adul	t human being is			
00.	$(a)5_{-}$	6 litres	$(b)6_7$ litres		(c) 5-7 litres	(d)5-8 litres		
80	(a) J^{-}	o nues specific gravity ((0)0-7 hites		(c) 5-7 nues	(u)5-8 nues		
09.	(a)1	$003 1 \ 005$	$(b)1\ 003\ 1$	035	(c) 1 005 1 050	$(d)1\ 001\ 1\ 010$		
00	(d)1. Ident	tify the incorrect	(0)1.003-1.	ho nar	t of the renal tubule during	(u)1.001-1.010		
90.	(a)G	lomerulus- Illtra	filtration	ne pai	t of the fenal tubule dufing	g unne formation		
	(h)U	oon of Henle- Al	nitiation of s	ome v	vater and sodium ions			
	$(0)\mathbf{L}$	CT - Reabsorbs	less amount of	of wat	ar			
	$(d)\mathbf{R}$	owman's cansule	- Receives a	lomer	ular filtrate			
91	Ident	tify the correct fu	unction of pai	rasym	nathetic system from the f	ollowing		
71.	$(a) \Delta$	(a) Accelerates heart heat (b) Constricts pupil of the eve						
	(a) P	etards the secret	ion of saliva		(d)Stimulates the seco	retion of tear glands		
92	Whi	ch of the followi	ng hormone i	s not s	secreted by Islets of Lange	rhans?		
12.	(a)In	sulin (b)Glu	r_{1}	Somat	ostatin (d)Thyroxine	1114115 :		
03	Incre	ased metabolism	cagon (c)	tom of	E which of the following di	sorder?		
)).	(a)Si	mple goitre	i is the symp		(b)Myyedema	sorder :		
	(a)	retinism			(d)Exonhthalmic goit	re		
94	Whi	ch of the followi	ng phase of n	nenstri	ual cycle lasts for 3-5 days	during which blood is		
77.	disch	arged?	ing phase of in		ual cycle lasts for 5-5 days	during which blobd is		
	(a)M	largeu:	(b)Follicula	r nhas	e (c) Ovulatory phase	(d)Luteal nh ase		
95	The	function of enzy	me Hyaluron	idase s	secreted by acrosome is	(u)Lutear phase		
)),	(a)Pr	otects the wall o	f the ovum	iuuse .	(b)Dissolves the wall	of the ovum		
	$(a) \Gamma$	oteets the wan o	rm		(d)Destroys the spern	n		
96	Whi	ch of the followi	ng factors is i	not res	ponsible for population ex	nlosion in India?		
70.	(a)Li	teracy	(b)Mortality	v rate	(c) Economic reasons	(d)Desire for male child		
97	The	squeeze out of th	e walls of the	= bloo	d vessels is called as	(u)Desire for male ennu		
71.	$(a)D^{2}$	ianedesis	(b)Phagocy	tosis	(c) Pinocytosis	(d)Metabolism		
98	The	red cross society	was found in	the v	ear	(u)Metuoonsin		
20.	(a)18	864	(b)1865	r the y	(c) 1866	(d)1867		
99	The	full form pf CNC	Fis		(0) 1000	(4)1007		
,,,	(a)C	ombined natural	gas	(\mathbf{h})	Combustion natural gas			
	(4)0		0		a sinouston nuturui gub			
	(c) (ompressed natur	ral gas	(d)	Costly natural gas			
10	(c) C 0.	The chief radi	ral gas iation polluta	(d) nt in ti	Costly natural gas he nuclear explosions of I	apan and Chernobyl is		

DETAILED SOLUTIONS

Q.NO.	OPTION	DESCRIPTION
1.	2	$Ft = mV_2 - mV_1$
		$\Rightarrow 10 \times 0.25 = P_{\rm f} - P_{\rm i}, P_{\rm f} = 2.5 Ns$
2.	2	Change in momentum, $\Delta \vec{P} = \vec{P}_2 - \vec{P}_1 = mv(-\hat{\imath}) - mvi$
		= -2mvi
		$\Delta \vec{P} \mid = 2mv = 2 \times 0.15 \times 12$
		$= 3.6 \mathrm{kgm s^{-1}}$
		By Impulse momentum theorem,
		Impulse, $ = \Delta p I = 3.6$ Ns
3.	2	Time taken by the ball to reach the ground is
		$t = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2 \times 500}{10}}$
		Horizontal distance covered = ut
		$\therefore 400 = 4 \times 10$
		$4 = 40 \text{ ms}^{-1}$.
		According to law of conservation of linear momentum, $Q = M_{\rm eff} + m_{\rm eff}$
		0 = Mv + mv -mu (1)(40)
		$v = \frac{1}{M} = -\frac{1}{100} = -0.4 \text{ m/s}$
4.	2	Force of friction acting in opposite direction $= \mu mg$
		$= 0.2 \times 2 \times 10 = 4 \text{ N}$
		Net force on the body, $F = 10 \text{ N} - 4 \text{ N} = 6 \text{ N}$
		Acceleration, $a = \frac{\Gamma}{m} = \frac{6}{2} = 3 \text{ ms}^{-2}$
		As initial velocity, $u = 0$
		$\therefore \text{ Distance travelled in 4 s, } s = \frac{1}{2}at^2$
		$=\frac{1}{2} \times 3 \times 16 = 24 \text{ m}$
		Work done by applied force, i.e.
		$W = F \cdot s = 10 \times 24 = 240 \text{ J}$
5.	2	According to the graph, the acceleration a varies linearly with the coordinate x .
		We may write $a = \alpha x$, where α is the slope of the graph.
		$\Rightarrow \alpha = \frac{a}{x} = \frac{20}{8} = 2.5 \text{ s}^{-2}$
		The force on the brick is in the positive x -direction and according to
		Newton's second law, its magnitude is given by
		$F = ma = m\alpha x$

		If x_f is the final coordinate, the work done by the force is
		$\int_{1}^{x_{f}}$
		$W = \int Fdx = m\alpha \times \int xdx$
		$(r^2)^{x_f}$ max $r^2_{z_f}$
		$= m\alpha \times \left(\frac{x}{2}\right) = \frac{m\alpha \times x_f}{2}$
		$10 \times 2.5 \times 64$
		=1000000000000000000000000000000000000
6.	3	$v^2 = u^2 + 2as \ 0 = 150 \times 130 + 2 \times a \times \frac{10}{100}$
		$a = \frac{-150 \times 150 \times 105}{72 \times} \Rightarrow a = -112500 \text{ m/sec}^2$
		200
		$F = ma = \frac{1000}{1000} \times 112500$
		F = 2250 N.
7.	2	Potential energy of the body is $mgh = 2(10)(16) = 320J$
8.	2	\therefore Power = $\frac{\text{work done}}{\text{work done}} \Rightarrow$ Power = $\frac{\text{mgh}}{\text{mgh}}$
		putting values (from given data)
		$\frac{1}{10^3} - \frac{m \times 10 \times 10}{m \times 10}$
		$\frac{10}{1} = \frac{1}{1}$
0	4	\Rightarrow Required mass = 10 kg
9.	4	$\Delta c = \frac{1}{9}\Delta F \Rightarrow 30 = \frac{1}{9}\Delta F = \frac{1}{5} \Rightarrow 54^{\circ} = \Delta F$
10.	4	Let the temperature of junction be θ .
		In equilibrium, rate of flow of heat through rod $1 = \text{sum of flow of rate of heat}$
		through, 2 and 3.
		(d0) $(d0)$ $(d0)$
		$\therefore \left(\frac{dt}{dt}\right)_1 = \left(\frac{dt}{dt}\right)_2 + \left(\frac{dt}{dt}\right)_3$
		$\frac{KA(\theta-0)}{KA(\theta-0)} - \frac{KA(90^{\circ}-\theta)}{KA(90^{\circ}-\theta)} + \frac{KA(90^{\circ}-\theta)}{KA(90^{\circ}-\theta)}$
		$\theta = 2(90^\circ - \theta)$
		$\Rightarrow 3\theta = 180^{\circ}$
		$\cdots \theta = 00$ C.
11.	1	Heat lost by the water:
		$= m_{ m water} S_{ m water} (T_f - T_i)$
		$= 0.30 \times 4186 \times (50.0 - 6.7)$
		= 54376.14 J
		Heat required to melt the ice:
		$= m_{\rm ice} L_{\rm fusion} = 0.15 L_f$
		Heat required to raise the temperature of ice water to the final temperature. $-m S (T_1 - T_1)$
		$= m_{ice} S_{water} (If Ii)$ $= 0.15 \times 4106 \times (6.7 - 0)$
		$- 0.13 \times 4100 \times (0.7 - 0)$ - 4206 02 1
		As we know that, Heat lost is equal to heat gained.
		\Rightarrow 54376.14 J = 0.15 L _f + 4206.93 J
		$L_f = 3.34 \times 10^5 J kg^{-1}$
12.	4	when both source and observer are moving towards each other Let V_1 be the
		velocity of 1^{st} driver and V_2 be the velocity of 2^{nd} Frequency heard by driver of

		second car, $f_2 = \left(\frac{V_s + V_3}{V_c - V_1}\right) f_1$
		240 + 16 5 256 5
		$=\frac{340+16.5}{340-22}\times400=\frac{350.5}{318}\times400$
		≅ 448 Hz
13.	2	Total charge on ten electrons is $Q = n$ ne [Where = $1.6 \times 10^{-19}C$]
	_	$= 10^7 \times 1.6 \times 10^{-19} C = 1.6 \times 10^{-12} C$
		Total taken by ten million electrons to pass from point P to point Q is $t = 1$ up
		$t = 1\mu S$) The current $L = \frac{Q}{2} = \frac{1.6 \times 10^{-12}}{1.6 \times 10^{-6}} = 1.6 \times 10^{-6} A$
		The current $t = \frac{1}{t} = \frac{10^{-6}}{10^{-6}} = 1.6 \times 10^{-6} \text{ A}$ Since the direction of the current is always opposite to the direction of flow of
		electrons. Therefore due to flow of electrons from point X to point Y the current
		will flow from point <i>Y</i> to point <i>X</i> .
14.	2	Let dq be the charge which passes in a small interval of time dt. Then $dq = Idt$
		On integrating, we get $(4 + 2t)$ dt
		-6
		$q = \int_{0}^{0} (4+2t)dt = [4t+t^{2}]_{2}^{6} = 48C$
		J_2
15.	3	Given, $l_1 = l + \frac{25}{100}l = \frac{5l}{4}$.
		Since, volume of wire remains unchanged on increasing length, hence
		$A_1 l_1 = A l_1$
		$A_1 \times \frac{1}{4} = Al \text{ or } A_1 = 4A/5$
		Given, $R = \rho l/A = 10\Omega$
		and $R_1 = \frac{\rho l_1}{\Lambda} = \frac{\rho 5l/4}{\Lambda \Lambda/5} = \frac{25\rho l}{16\Lambda}$
		A1 4A/5 10 A
		$\therefore R_1 = \frac{25}{16} \times 10 = \frac{250}{16} = 15.6\Omega$
		- 16 16
16.	1	Effective resistance of <i>n</i> resistance each of the resistance <i>r</i> in series $R_s = r \times n =$
		R, so $r = R/n$ When these resistance are connected in parallel, the effective resistance $R_n =$
		$r/n = \frac{R/n}{R} = R/n^2$
17.	2	$\frac{1}{2}$
		$\frac{I - \overline{R + r}}{R + r}$
		$\varepsilon = 2.1 \text{ V}, I = 0.2 \text{ A} \therefore 0.2 \times 10 + 0.2 \times I = 2.1$ 2 + 0 2r - 2 1 -> 0 2r - 0 1 or r - $\frac{1}{2}$ - 0 50
18	3	When a charged particle moves perpendicular to the region of magnetic field then
10.	U	magnitude of its velocity remains same and direction changes hence direction of
10	1	momentum changes
19.		If two parallel current-carrying conductors placed 1 m apart in vacuum are placed such that each carries 1 A current, then there is a force of 2×10^{-7} N per metre of
		length
20.	4	A moving coil galvanometer is a device used to detect the current in the circuit
21.	3	For spherical mirror, $f = \frac{\kappa}{2}$
		here, $R = 20 \text{ cm}, m = 2.5$

		R 20
		$\therefore f = \frac{1}{2} = \frac{1}{2} = 10 \text{ cm}$
		Now,
		$\frac{1}{1} - \frac{1}{1} + \frac{1}{1}$
		$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$
		and magnification $m = \frac{-v}{v}$ or $v = -mu$
		$1 \ 1 \ 1 \ 1^{u} \ (1 \ 1) \ (1 \ 1) \ (1 \ 1)$
		$\therefore \frac{1}{f} = \frac{1}{u} - \frac{1}{mu} \Rightarrow u = f\left(1 - \frac{1}{m}\right) = 10\left(1 - \frac{1}{2.5}\right) = 6 \text{ cm}$
22.	1	When an object lying in a denser medium is observed from rare medium, then real
		depth of object is more than that observed depth.
23.	2	As we know, refractive index of denser medium w.r.t. rarer medium $=$
		Real depth
2.1		Apparent depth
24.	3	Mass of nucleus is less than mass of nucleons
25.	2	Binding energy (E_b) is energy required to break a nucleus into its nucleons
26.	4	Size of 'F' is smallest in period 2 & hence effective nuclear chare increases and
		thus has high electron affinity.
27.	4	Atomic radius decreases and nuclear charge increases.
28.	2	'M' would most likely be in the group in which Mg is placed.
29.	4	Nitrogen: $N \equiv N$
30.	4	Acetic acid, CH_3COOH .
31.	4	There will be no color change as nitric acid is acidic.
32.	2	Since mass is constant for all gases, gas with least molar mass will have most no. of molecules i.e. NH
33	2	2 ×Vapour density – Palative molecular mass
55.	2	$2 \times v$ apour density – Relative molecular mass
24		$\therefore \text{ Relative molecular mass} = 2 \times 5 = 10g$
34.	1	2 volume of U_2 is produced by 1 volume of U_2H_2
		$\therefore 8.4 \ dm^3$ of CO_2 at STP produced from $=\frac{1\times6.4}{2}$
		$= 4.2 \ dm^3 \ of \ C_2 H_2$
35.	4	Aq. acetic acid.
36.	2	$NH_{A}OH$ is weak electrolyte so it dissociates into ions less & its solution contains
	_	both molecules & ions. CCl ₄ contains molecules only and Dil. HCl is strong
		electrolyte & contains only ions.
37.	2	Magnesium.
38.	2	Copper and Zinc
39.	1	$2NH_3 + 3Cl_2 \rightarrow 6HCl + N_2$
40.	3	$2Pb(NO_3)_{2(S)} \rightarrow 2PbO_{(S)} + 4NO_2 + O_2$
41.	4	$S + 6HNQ_2 \rightarrow H_2SQ_4 + 2H_2Q + 6NQ_2$
42.	2	S is oxidized SO_2 by H_2SO_4 which acts as oxidizing agent.
43.	1	$C_{15}H_{20}$
44	1	Propan-1-ol and Propan-2-ol are Position isomers
		riopun i or une riopun 2 or une rosition isomers.
45.	2	$CH_2 - Br$
		$H_2C = CH_2 \xrightarrow{Br_2/CCl_4}$
		$-addition reaction CH_2 - Br$
46.	1	Alkane.
47.	1	Formic acid
48.	4	Carboxyl – COOH
		0
		$C_{I_3} - C - O - H$ of $C_{I_3} COOH$

49.	4	$HC \equiv CH$
		Ethyne
50.	1	When acid reacts with alcohol in the presence of conc. H ₂ SO ₄ , ester is formed.
51.	2	Total Cost = Rs. 11,000
		Discount = 30% . \therefore Total discount = $\frac{30}{100} \times 11000 = 3300$
		$\therefore \text{Cost} = 11000 - 3300 = 7700$
		$GST=18\% = \frac{18}{18} \times 7700 = 1380$
		$\therefore Amount = 7700 + 1380 = 9086$
52.	1	$a = p[(1 - 14)^4 - 1] = p[(1 - 14)^4 - 1]$
		$C_p = P[(1+r)^{+n} - 1] = 5000 \left[\left(1 + \frac{1}{100} \right)^{-1} \right] = 34448$
		$\therefore A = P + C_P = 50000 + 34448 = 84448$
50		
53.	1	$P = 4x = 44 \Rightarrow x = 11$ $\therefore A = x^2 = 121$
54	4	$\frac{R - x - 121}{Bv trial-and-error method}$
55.	3	$6x^{2} + 4x - 2 = 0 \Rightarrow 6x^{2} + 6x - 2x - 2 = 0 \Rightarrow (6x - 2)(x + 1) = 0$
		$\therefore x = \frac{1}{2}, x = -1$
		$ \begin{bmatrix} 3^{2} \\ b \\ c \\ c$
		Let $u = \frac{1}{3}, b = -1 \Rightarrow \frac{1}{b} + \frac{1}{a} = -\frac{1}{3} = 3 = -\frac{1}{3}$
56	1	$kx^{2} + 6x + 4k = 0$
001	-	Let a and b be the two roots. Then $a + b = -\frac{6}{2}$ and $ab = \frac{4k}{4} = 4$
		Let u and b be the two roots. Then $u + b = \frac{1}{k}$ and $ub = \frac{1}{4}$
		$\therefore -\frac{1}{k} = 4 \Rightarrow k = -\frac{1}{4} = -\frac{1}{2}$
57.	4	Let ages of X and Y be 6x and 4x. Then by the given condition $\frac{6x-5}{4x-5} = \frac{5}{3}$
		$\Rightarrow 18x - 15 = 20x - 25 \Rightarrow 2x = 10 \Rightarrow x = 5$
= -		$\therefore \text{ Age of X is } 6x = 30, \text{ Y is } 4x = 20.$
58.	4	$\frac{3p-3}{2} = \frac{1}{8p-6} \Rightarrow 24p^2 - 48p + 28 = 0 \Rightarrow 6p^2 - 17p + 7 = 0$
		$\Rightarrow 3p(2p-1) - 7(2p-1) = 0 \Rightarrow p = \frac{7}{2}, \frac{1}{2}$
59.	4	Clearly $a = 6$
60.	1	When $x^2 + px + q$ is divided by $(x + a)$, the remainder is $q - (p - a)a$
		When $x^2 + mx + n$ is divided by $x + a$, the remainder is $n - (m - a)a$
		$\Rightarrow q - (p - a)a = n - (m - a)a \Rightarrow a = \frac{m - p}{n - q}$
61.	1	Let $P = \begin{bmatrix} a & b \end{bmatrix}$
		$\begin{bmatrix} c & d \end{bmatrix}^{\prime}$
		Given that $PQ = R \Rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 0 & 15 \\ 19 & -15 \end{bmatrix}$
		$\Rightarrow \begin{bmatrix} 2a+5b & -3a+6b \end{bmatrix} = \begin{bmatrix} 8 & 15 \end{bmatrix}$
		$\lfloor 2c + 5d - 3c + 6d \rfloor$ $\lfloor 19 - 15 \rfloor$
		Comparing and solving we get $P = \begin{bmatrix} 7 & -7 \\ 7 & 1 \end{bmatrix}$
62.	3	Given $S_6 = 12$ and $S_{10} = 60 \Rightarrow 3[2a + 5d] = 12$ and $5[2a + 9d] = 60$
		$\Rightarrow 2a + 5d = 4 \cdots (i)$ and $2a + 9d = 12 \cdots (ii)$.
63	2	Solving (1) and (11), $a = -5, a = 2$ Given $S = -2n^2 + 2n \pm S_{-1} = -2(24)^2 + 2(24) = -1200$
64.	4	Slope of $ar \pm hr \pm c = 0$ is $m = -\frac{a}{2} + m = -\frac{2}{2} - 2$
65	· ·	Stope of $ux + by + c - 0$ is $m - \frac{1}{-1} = 2$ We know that ratio of area of two triangles is equal to ratio of squares of their
03.	2	we know that ratio of area of two triangles is equal to ratio of squares of their $289 (17)^2$
		corresponding sides. $\therefore \frac{205}{225} = \left(\frac{17}{x}\right) \Rightarrow x = 15$

66	1	Error the diagram OD 2 OC 5 and $OD + DC$
00.	1	From the diagram, $OB=3$, $OC=3$ and $OB \perp BC$.
		$\therefore OB^2 + BC^2 = OC^2 \qquad (\) \times)$
		$\Rightarrow BC = 4$. :Length of AC=8
67.	1	$V = \pi r^2 h = \pi \times \left(\frac{3.5}{2}\right)^2 \times A^2 = A0A08$
		$V = \pi r \pi = \pi \times \left(\frac{2}{2}\right) \times 42 = 404.08 \times 15$
		For $10m^2 - 15 Rs$. Then for $404.08m^2 = \frac{101000015}{10} = 606 Rs$.
68.	1	Total canvas = CSA of cone + CSA of cylinder
		$=\pi rl + 2\pi rh = \pi r(l+2h) = \frac{22}{7} \times 52.5 \times (53+8) = 10061$
		h = 4
		r = 52.5
69.	2	$(1 + \tan A + \sec A)(1 + \cot A - \csc A) = (1 + \frac{\sin A}{1 + 1})(1 + \frac{\cos A}{1 + 1})$
		$(\cos A \cos A)$ $(\sin A)$
		$\overline{\sin A}$
		$= \left(\frac{\cos A + \sin A + 1}{\cos A + 1}\right) \left(\frac{\sin A + \cos A - 1}{\cos A + \sin A}\right) = \frac{(\cos A + \sin A)^2 - 1}{\cos^2 A + \sin^2 A$
		$\cos A$ / $\sin A$ / $\sin A$ / $\sin A$ cos A $\sin^2 A + \cos^2 A + 2 \sin A \cos A - 1$ 2 sin A cos A
		$= \frac{\sin A \cos A}{\sin A \cos A} = \frac{2 \sin A \cos A}{\sin A \cos A} = 2$
70	1	1 1 1 1 1 1 1 1 1 1
/0.	1	$\frac{1}{1} + \frac{1}{1} = \frac{1 - \cos(90^\circ - A) + 1 + \cos(90^\circ - A)}{1}$
		$1 + \cos(90^{\circ} - A)$ $1 - \cos(90^{\circ} - A)$ $1 - \cos^2(90^{\circ} - A)$
		$=\frac{2}{1+2(000-4)}$
71	1	$\frac{1}{1} \text{ Sin}^2(90^\circ - A)$
/1.	1	Let AC be the stick of length 111, and AB be the shadow of the stick. 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
		\therefore angle between AB and BC is $\tan \theta = \frac{1}{\sqrt{3}} \Rightarrow \theta = 30^{\circ}$
		$A = \sqrt{3} B$
72	3	Writing the given observations in ascending order, we have 20 24 24 5 28 33
, 2.	~	36.8
		Number of observations $= 6$.
		: Madian - maps of $\binom{n}{t}^{th}$ abcommution and $\binom{n}{t+1}^{th}$ abcommution
		$\frac{1}{245+28}$ $\frac{1}{2}$
		$\therefore M = \frac{24.5 + 26}{2} = 26.25$
73.	2	By the definition
74.	4	Since the multiples of 3 are eliminated, total 12 cards are eliminated from the
		pack.
		Remaining cards $= 40$
		P(6)=0 and P(face cards) =12. \therefore P(6 or a face card) = $\frac{12}{40} = \frac{3}{10}$
		40 10
75.	3	$S = \{1H, 1T, 2H, 2T, 3H, 3T, 4H, 4T, 5H, 5T, 6H, 6T\}$
76.	1	Leucoplasts store reserve food materials such as Starch.
77.	2	The membrane vacuole is called as Tonoplast.
78.	1	During cell cycle, In S phase of the Interphase DNA replication takes place.

79.	4	The stage of the cell cycle in the given image is Late anaphase.
80.	3	Ascaris is having 4 chromosomes.
81.	2	Sickle cell anaemia is caused by single gene mutation.
82.	3	In hypotonic solution, endosmosis takes place.
83.	1	Potometer is a device used to measure the rate of water intake by plants.
84.	2	The loss of water directly from the surface of leaf is called as Cuticular
		transpiration.
85.	3	The light independent reactions occur in stroma of the chloroplast.
86.	2	The transformation of several glucose molecules to produce starch is called as
		Polymerization.
87.	1	Blood- Present in arteries, Veins and Capillaries.
		Tissue fluid- Present between the cells of organs.
		Lymph- Present in Spleen and tonsils.
88.	1	The average volume of blood in an adult human being is 5-6 litres.
89.	2	The specific gravity of urine is 1.003- 1.035.
90.	3	Proximal convoluted tubule absorbs large amount of water.
91.	2	Parasympathetic system decreases heartbeat, Constriction pupil of the eye,
		stimulates the secretion of saliva, retards the secretion of tear glands.
92.	4	Thyroxine is secreted by Thyroid gland.
93.	4	In Exophthalmic goitre, increased rate of metabolism can be seen.
94.	1	In menstrual phase of menstrual cycle lasts for 3-5 days during which blood is
		discharged.
95.	2	Hyaluronidase secreted by acrosome dissolves the wall of ovum.
96.	1	Literacy is not a cause for population explosion in India.
97.	1	The squeeze out of the walls of the blood vessels is called as Diapedesis.
98.	1	The red cross society was found in the year 1864.
99.	3	CNG- Compressed natural gas.
100.	1	The chief radiation pollutant in the nuclear explosions of Japan and Chernobyl is
		Iodine- 131.